MAGI2‐AS3 inhibits breast cancer by downregulating DNA methylation of MAGI2

Breast cancer is one of the most threatening diseases for women. Long noncoding RNAs were reported to be involved in breast cancer development. In this study, we analyzed The Cancer Genome Atlas breast cancer tissue high‐throughput sequencing data and screened and validated the low‐expressing long n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2021-02, Vol.236 (2), p.1116-1130
Hauptverfasser: Xu, Xiaolong, Yuan, Xiaoning, Ni, Jiali, Guo, Jing, Gao, Yang, Yin, Weinan, Li, Feng, Wei, Lei, Zhang, Jingwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Breast cancer is one of the most threatening diseases for women. Long noncoding RNAs were reported to be involved in breast cancer development. In this study, we analyzed The Cancer Genome Atlas breast cancer tissue high‐throughput sequencing data and screened and validated the low‐expressing long noncoding RNA named MAGI2‐AS3. Through gene coexpression analysis, we found that MAGI2‐AS3 has a good expression correlation with MAGI2. Overexpression of MAGI2‐AS3 or MAGI2 in breast cancer cells MCF‐7 would inhibit the Wnt/β‐catenin pathway and inhibit cell proliferation and migration. Gene structure and DNA methylation analysis results indicated that MAGI2‐AS3 may act as a cis‐acting regulatory element downregulating the DNA methylation level of the MAGI2 promoter region, and the DNA demethylase TET1 inhibitor can reverse MAGI2‐AS3 overexpression caused upregulation of MAGI2 and cellular effects. Our findings reveal the role of MAGI2‐AS3 in breast cancer and provide potential novel therapeutic targets for metastatic breast cancer intervention. In this study, we analyzed The Cancer Genome Atlas breast cancer tissue high‐throughput sequencing data and screened and validated the low‐expressing long noncoding RNA named MAGI2‐AS3. Overexpression of MAGI2‐AS3 or MAGI2 in breast cancer cells MCF‐7 would inhibit the Wnt/β‐catenin pathway and inhibit cell proliferation and migration. Gene structure and DNA methylation analysis results indicated that MAGI2‐AS3 may act as a cis‐acting regulatory element downregulating the DNA methylation level of the MAGI2 promoter region, and DNA demethylase TET1 inhibitor can reverse MAGI2‐AS3 overexpression caused upregulation of MAGI2 and cellular effects.
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.29922