Attachment performance of stick insects (Phasmatodea) on convex substrates
Phasmatodea (stick and leaf insects) are herbivorous insects well camouflaged on plant substrates as a result of cryptic masquerade. Also, their close association with plants has allowed them to adapt to different substrate geometries and surface topographies of the plants they imitate. Stick insect...
Gespeichert in:
Veröffentlicht in: | Journal of experimental biology 2020-09, Vol.223 (Pt 17) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phasmatodea (stick and leaf insects) are herbivorous insects well camouflaged on plant substrates as a result of cryptic masquerade. Also, their close association with plants has allowed them to adapt to different substrate geometries and surface topographies of the plants they imitate. Stick insects are gaining increasing attention in attachment- and locomotion-focused research. However, most studies experimentally investigating stick insect attachment have been performed either on single attachment pads or on flat surfaces. In contrast, curved surfaces, especially twigs or stems of plants, are dominant substrates for phytophagous insects, but not much is known about the influence of curvature on their attachment. In this study, by combining analysis of tarsal usage with mechanical traction and pull-off force measurements, we investigated the attachment performance on curved substrates with different diameters in two species of stick insects with different tarsal lengths. We provide the first quantitative data for forces generated by stick insects on convex curved substrates and show that the curvature significantly influences attachment ability in both species. Within the studied range of substrate curvatures, traction force decreases and pull-off force increases with increasing curvature. Shorter tarsi demonstrate reduced forces; however, tarsus length only has an influence for diameters thinner than the tarsal length. The attachment force generally depends on the number of tarsi/tarsomeres in contact, tarsus/leg orientation and body posture on the surface. Pull-off force is also influenced by the tibiotarsal angle, with higher pull-off force for lower angles, while traction force is mainly influenced by load, i.e. adduction force. |
---|---|
ISSN: | 0022-0949 1477-9145 |
DOI: | 10.1242/jeb.226514 |