Shifts in thermal preference of introduced Asian house geckos (Hemidactylus frenatus) in temperate regions of southeastern Australia

Despite its tropical origin, the Asian house gecko (Hemidactylus frenatus) is currently invading higher latitudes around the world. In this study, we investigated whether the introduced geckos in the subtropical/temperate region of southeastern Australia have shifted their thermal biology to cope wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal biology 2020-07, Vol.91, p.102625-6, Article 102625
Hauptverfasser: Lapwong, Yingyod, Dejtaradol, Ariya, Webb, Jonathan K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite its tropical origin, the Asian house gecko (Hemidactylus frenatus) is currently invading higher latitudes around the world. In this study, we investigated whether the introduced geckos in the subtropical/temperate region of southeastern Australia have shifted their thermal biology to cope with colder temperatures. In the lab, we measured the body temperatures of geckos from Thailand and Australia in a cost-free thermal gradient. Native H. frenatus from Thailand displayed a diel pattern of thermoregulation. Geckos maintained higher body temperatures during mid-afternoon and at dusk but selected cooler temperatures during the night. Introduced geckos showed a similar pattern of thermoregulation, but selected lower body temperatures in summer (mean = 28.9 °C) and winter (mean = 25.5 °C) than native geckos (mean = 31.5 °C). While the Asian house geckos from Thailand did not alter their body temperatures after feeding, their conspecifics from southeastern Australia selected body temperatures that were 1.6–3.1 °C higher after feeding. In conclusion, our study shows that invasive house geckos in Australia have shifted their preferred body temperatures downwards relative to their native conspecifics in Thailand, presumably as a result of plasticity or natural selection. Our findings suggest that these tropical geckos have adapted to colder regions, and thus, they may spread much further than expected for a tropical ectotherm. •An invasive tropical gecko, Hemidactylus frenatus, is invading colder regions.•The introduced geckos selected lower body temperatures than native geckos.•The introduced geckos showed seasonal adaptation in thermal preference.•The introduced geckos selected higher body temperature after feeding.•These shifts in thermal preference potentially facilitate further invasion.
ISSN:0306-4565
1879-0992
DOI:10.1016/j.jtherbio.2020.102625