Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides

Fusions of fatty acids and peptides expand the structural diversity of natural products; however, polyketide/ribosomally synthesized and post-translationally modified peptides (PK/RiPPs) hybrid lipopeptides are relatively rare. Here we report a family of PK/RiPPs called goadvionins, which inhibit th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2020-09, Vol.12 (9), p.869-877
Hauptverfasser: Kozakai, Ryosuke, Ono, Takuto, Hoshino, Shotaro, Takahashi, Hidenori, Katsuyama, Yohei, Sugai, Yoshinori, Ozaki, Taro, Teramoto, Kazuya, Teramoto, Kanae, Tanaka, Koichi, Abe, Ikuro, Asamizu, Shumpei, Onaka, Hiroyasu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fusions of fatty acids and peptides expand the structural diversity of natural products; however, polyketide/ribosomally synthesized and post-translationally modified peptides (PK/RiPPs) hybrid lipopeptides are relatively rare. Here we report a family of PK/RiPPs called goadvionins, which inhibit the growth of Gram-positive bacteria, and an acyltransferase, GdvG, which catalyses the condensation of the PK and RiPP moieties. Goadvionin comprises a trimethylammonio 32-carbon acyl chain and an eight-residue RiPP with an avionin structure. The positions of six hydroxyl groups and one double bond in the very-long acyl chain were determined by radical-induced dissociation tandem mass spectrometry, which collides radical ion species to generate C–C bond cleavage fragments. GdvG belongs to the Gcn5-related N -acetyltransferase superfamily. Unlike conventional acyltransferases, GdvG transfers a very long acyl chain that is tethered to an acyl carrier protein to the N-terminal amino group of the RiPP moiety. gdvG homologues flanked by PK/fatty acid and RiPP biosynthesis genes are widely distributed in microbial species, suggesting that acyltransferase-catalysed condensation of PKs and RiPPs is a general strategy in biosynthesis of similar lipopeptides. The biosynthesis of goadvionins—hybrid lipopeptide antibiotics—is not fully understood. An unusual acyltransferase, GdvG, has now been identified and shown to catalyse a condensation reaction between an acyl-carrier-protein-tethered very-long-chain fatty acid and an eight-residue ribosomally synthesized and post-translationally modified peptide. The position of functional groups in the very-long acyl chain have been determined by tandem mass spectrometry.
ISSN:1755-4330
1755-4349
1755-4349
DOI:10.1038/s41557-020-0508-2