Plasmid-Mediated Biodegradation of Chlorpyrifos and Analysis of Its Metabolic By-Products

Organophosphate pesticide persistence is an emerging menace to the environment and despite this fact, its use has been enhanced due to its high efficiency. Bioremediation using microorganisms would be the only means by which these hazardous compounds could be wiped out without disturbing the environ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current microbiology 2020-10, Vol.77 (10), p.3095-3103
Hauptverfasser: John, Elizabeth M., Varghese, Edna M., Shaike, Jisha M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organophosphate pesticide persistence is an emerging menace to the environment and despite this fact, its use has been enhanced due to its high efficiency. Bioremediation using microorganisms would be the only means by which these hazardous compounds could be wiped out without disturbing the environmental harmony. The current work studied the molecular mechanism of degradation of Chlorpyrifos (CP) by a bacterial consortium C5 comprising of three soil isolates Staphylococcus warneri (CPI 2), Pseudomonas putida (CPI 9) and Stenotrophomonas maltophilia (CPI 15), which unveiled that the property is plasmid borne. All the isolates were found to possess a 4 kb plasmid which could be cured only by using sodium azide. The Escherichia coli JM109 cells when transformed individually with the plasmid of the isolates showed CP degradation in mineral salts medium (MSM) that contained CP as the sole carbon source. The degradative enzyme organophosphorus hydrolase (~ 60 KDa) of the isolates was extracted and purified to 31.85, 26 and 37.74 fold, respectively. The possible metabolic by-products of CP degradation by the consortium C5, were also analysed. The LC-Q-Tof MS analysis revealed the presence of the major metabolite 3, 5, 6 -trichloropyridine (TCP) with the formation of chlorpyrifos oxon as the intermediate. The isolates also showed trichloropyridine degradation (> 80%) individually in MSM-TCP medium proving its efficiency to remediate both CP and TCP.
ISSN:0343-8651
1432-0991
1432-0991
DOI:10.1007/s00284-020-02115-y