Label-free fluorescent sensor for one-step lysozyme detection via positively charged gold nanorods
In the article, a simple and label-free strategy was proposed for the sensitive detection of lysozyme based on the fluorescence quenching of positively charged gold nanorods ((+)AuNRs) to DNA-templated silver nanoclusters (DNA/AgNCs). To construct the sensor, a DNA template was designed with a C-ric...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2021-03, Vol.413 (6), p.1541-1547 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the article, a simple and label-free strategy was proposed for the sensitive detection of lysozyme based on the fluorescence quenching of positively charged gold nanorods ((+)AuNRs) to DNA-templated silver nanoclusters (DNA/AgNCs). To construct the sensor, a DNA template was designed with a C-rich sequence at the 5′-terminal for the synthesis of AgNCs, while a lysozyme binding aptamer (LBA) at the 3′-terminal for the recognition of lysozyme, and such DNA/AgNCs was used as the fluorescence probe. Meantime, the fluorescence signal of such DNA/AgNCs can be quenched based on the electrostatic adsorption of them with (+)AuNRs, due to the surface energy transfer. In the presence of lysozyme, the specific binding happened between the LBA section of DNA/AgNCs and lysozyme, inducing the reduction of the total charge of DNA/AgNCs and weakening the adsorption of them with (+)AuNRs, which directly resulting in the recovery of the fluorescence signal. Besides, the fluorescence signal recovery of DNA/AgNCs has a linear positive proportional relationship with lysozyme concentration in the range of 10 pM–2.0 nM under the optimal conditions. Moreover, a satisfactory recovery (99.6–107.2%) was obtained while detecting lysozyme in human serum samples.
Graphical abstract
A simple and label-free strategy was proposed for the sensitive detection of lysozyme based on the fluorescence quenching of positively charged gold nanorods ((+)AuNRs) to DNA-templated silver nanoclusters (DNA/AgNCs). |
---|---|
ISSN: | 1618-2642 1618-2650 |
DOI: | 10.1007/s00216-020-02814-2 |