Thermal Degradation of Cellulose Filaments and Nanocrystals

Cellulose-derived materials, such as microcellulose and nanocellulose, are sustainable materials with a wide range of applications. Here, through a multi-analytical approach, we investigate the thermal degradation of microfibrillar cellulose filaments (CFs); acidic cellulose nanocrystals (CNC-H), co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2020-08, Vol.21 (8), p.3374-3386
Hauptverfasser: D’Acierno, Francesco, Hamad, Wadood Y, Michal, Carl A, MacLachlan, Mark J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cellulose-derived materials, such as microcellulose and nanocellulose, are sustainable materials with a wide range of applications. Here, through a multi-analytical approach, we investigate the thermal degradation of microfibrillar cellulose filaments (CFs); acidic cellulose nanocrystals (CNC-H), containing sulfate half-ester groups on the surface; and neutralized cellulose nanocrystals (CNC-Na), where the protons are replaced by sodium ions. CFs have a simple degradation mechanism, associated with extensive dehydration, decarboxylation, and decarbonylation, and the highest thermal stability of the three (∼325 °C) despite the abundance of amorphous regions and inhomogeneous fibrous mass that make them structurally and morphologically less homogeneous than high-crystallinity CNCs. CNC-H decompose in a complex way below 200 °C, with large char fractions and evaporation of sulfur compounds at high temperatures, while sodium counterions in CNC-Na can improve the thermal stability up to 300 °C, where the pyrolysis leads to partial rehydration and formation of sodium hydroxide on the surface.
ISSN:1525-7797
1526-4602
DOI:10.1021/acs.biomac.0c00805