Structural Requirements of the Phytoplasma Effector Protein SAP54 for Causing Homeotic Transformation of Floral Organs
Phytoplasmas are intracellular bacterial plant pathogens that cause devastating diseases in crops and ornamental plants by the secretion of effector proteins. One of these effector proteins, termed SECRETED ASTER YELLOWS WITCHES’ BROOM PROTEIN 54 (SAP54), leads to the degradation of a specific subse...
Gespeichert in:
Veröffentlicht in: | Molecular plant-microbe interactions 2020-09, Vol.33 (9), p.1129-1141 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phytoplasmas are intracellular bacterial plant pathogens that cause devastating diseases in crops and ornamental plants by the secretion of effector proteins. One of these effector proteins, termed SECRETED ASTER YELLOWS WITCHES’ BROOM PROTEIN 54 (SAP54), leads to the degradation of a specific subset of floral homeotic proteins of the MIKC-type MADS-domain family via the ubiquitin-proteasome pathway. In consequence, the developing flowers show the homeotic transformation of floral organs into vegetative leaf-like structures. The molecular mechanism of SAP54 action involves binding to the keratin-like domain of MIKC-type proteins and to some RAD23 proteins, which translocate ubiquitylated substrates to the proteasome. The structural requirements and specificity of SAP54 function are poorly understood, however. Here, we report, based on biophysical and molecular biological analyses, that SAP54 folds into an α-helical structure. Insertion of helix-breaking mutations disrupts correct folding of SAP54 and compromises SAP54 binding to its target proteins and, concomitantly, its ability to evoke disease phenotypes in vivo. Interestingly, dynamic light scattering data together with electrophoretic mobility shift assays suggest that SAP54 preferentially binds to multimeric complexes of MIKC-type proteins rather than to dimers or monomers of these proteins. Together with data from literature, this finding suggests that MIKC-type proteins and SAP54 constitute multimeric α-helical coiled coils. Our investigations clarify the structure-function relationship of an important phytoplasma effector protein and may thus ultimately help to develop treatments against some devastating plant diseases. |
---|---|
ISSN: | 0894-0282 1943-7706 |
DOI: | 10.1094/MPMI-02-20-0028-R |