Reduction-responsive sulfur dioxide polymer prodrug nanoparticles loaded with irinotecan for combination osteosarcoma therapy
Combination therapy can boost the therapeutic effectiveness of monotherapies by achieving synergy between therapeutic agents. Herein, a reduction-responsive sulfur dioxide (SO2) polymer prodrug was synthesized as a nanocarrier to load irinotecan (IRN) to be used in combination osteosarcoma therapy....
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2020-11, Vol.31 (45), p.455101-455101 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Combination therapy can boost the therapeutic effectiveness of monotherapies by achieving synergy between therapeutic agents. Herein, a reduction-responsive sulfur dioxide (SO2) polymer prodrug was synthesized as a nanocarrier to load irinotecan (IRN) to be used in combination osteosarcoma therapy. The SO2 prodrug (denoted as mPEG-PLG (DNs)) was synthesized by coupling a small-molecule SO2 donor, N-(3-azidopropyl)-2,4-dinitrobenzenesulfonamide (AP-DNs), to the side chains of methoxy poly (ethylene glycol)-block-poly (γ-propargyl-L-glutamate) block copolymer. The mPEG-PLG (DNs) had the ability to self-assemble into micelles while simultaneously encapsulating IRN in aqueous media. The formed micelles led to enhanced SO2 and IRN release in reductive conditions. Using nile red as a model drug, the loaded micelles were efficiently internalized by cancer cells, demonstrated by confocal laser scanning microscopy and flow cytometry. The release of SO2 within nanoparticles (NPs) in tumor cells led to enhanced intracellular reactive oxygen species amounts together with induced oxidative destruction to cancer cells. Furthermore, the IRN-loaded SO2 polymer prodrug NPs mediated synergistic therapeutic effects against osteosarcoma cells, leading to improved biodistribution and enhanced tumor growth inhibition over control groups in a murine osteosarcoma model. Taken together, this work highlights the potential of SO2 polymer prodrugs as reduction-responsive nanocarriers to load chemotherapeutics for effective combination osteosarcoma therapy. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/aba783 |