Removal of aqueous Cr(VI) by Zn- and Al-modified hydrochar
Pristine hydrochar is a carbonaceous material that can sorb hexavalent chromium (Cr(VI)), a kind of toxic pollutants and difficult to removal, from aqueous solution but its capacity is limited. With the goal of improving this ability, two modified hydrochars were produced by co-hydrothermal carboniz...
Gespeichert in:
Veröffentlicht in: | Chemosphere (Oxford) 2020-12, Vol.260, p.127610-127610, Article 127610 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pristine hydrochar is a carbonaceous material that can sorb hexavalent chromium (Cr(VI)), a kind of toxic pollutants and difficult to removal, from aqueous solution but its capacity is limited. With the goal of improving this ability, two modified hydrochars were produced by co-hydrothermal carbonization (200 °C, 7h) of bamboo sawdust with zinc chloride (ZnCl2) or aluminum chloride (AlCl3). Compared to the pristine hydrochar, the ZnCl2-and AlCl3-modified hydrochars were more fully carbonized (higher C content and lower H/C) and had higher surface area (increased by 26 and 4.3 times, respectively) and larger pore volume (increased by 43 and 5.5 times, respectively). Due to these improved properties, the Cr(VI) maximum adsorption capacity (modeled via Langmuir isotherms) of ZnCl2-and AlCl3-modified hydrochar increased by 3.4 and 2.8 times, respectively. In addition, Cr(VI) adsorption kinetic of modified hydrochar was well fitted by the pseudo-second-order model. Cr sorption capacity increased at low pH and ion strengths, suggesting the potential roles of electrostatic interaction and ion exchange mechanisms. These results indicate that hydrochars modified by ZnCl2 and AlCl3 treatment are promising in environmental applications that require Cr(VI) removal.
[Display omitted]
•Hydrothermal treatment of biomass with metal salts produced modified hydrochars.•Modified hydrochars showed enhanced surface area, pore volume, and aromaticity.•Modified hydrochars adsorbed 2.8 times more aqueous Cr(VI) than pristine hydrochar.•Greater Cr(VI) removal took place at lower solution pH and ionic strength. |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2020.127610 |