Controlled growth of AgI nanoparticles on hollow WO3 hierarchical structures to act as Z-scheme photocatalyst for visible-light photocatalysis
[Display omitted] Controllable fabrication of nanomaterials with hierarchical architecture have received much attention in the field of photocatalysis due to their enhanced light-harvesting efficiency. Moreover, fabricating direct Z-scheme heterojunctions havebeenproven to be effective way to enhanc...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2020-11, Vol.579, p.754-765 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Controllable fabrication of nanomaterials with hierarchical architecture have received much attention in the field of photocatalysis due to their enhanced light-harvesting efficiency. Moreover, fabricating direct Z-scheme heterojunctions havebeenproven to be effective way to enhance the photocatalytic performance of photocatalysts. Herein, hierarchically hollow WO3 nanoflower was successfully synthesized by a simple hydrothermal treatment of tungsten chloride (WCl6) in ethanol solution. Decoration of the obtained WO3 with AgI nanoparticles in situ can form the Z-scheme AgI/WO3 hollow hierarchical nanoflowers (AgI/WO3 HHNFs). The AgI/WO3 HHNFs exhibited excellent photocatalytic activity and remarkable stability for the degradation of tetracycline hydrochloride (TC-HCl) and Eosin B (EB) under the irradiation of a low energy consume light (LED lamp, 5 W). Interestingly, compared to pure AgI nanoparticles, 3D hollow WO3 nanoflowers and AgI/WO3 nanosheets, the AgI/WO3 HHNFs revealed conspicuously enhanced photocatalytic activity. Thisphenomenon could be associated to three aspects, namely the high light-harvesting efficiency, increased light trapping and scattering capability and strongly coupled Z-scheme heterointerface, which effectively improved the photoelectron-hole sepreation efficiency. Our work therefore provide a novel insight for the fabrication of 3D hollow hierarchical structures. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2020.06.126 |