Acute toxicities of fluorene, fluorene-1-carboxylic acid, and fluorene-9-carboxylic acid on zebrafish embryos (Danio rerio): Molecular mechanisms of developmental toxicities of fluorene-1-carboxylic acid

In this study, fluorene (FL), FL-1-carboxylic acid (FC-1), and FL-9-carboxylic acid (FC-9) were investigated to understand their acute toxicity by measuring inhibitory effects on hatching rates and developmental processes of zebrafish embryos (Danio rerio). For exposure concentrations up to 3000 μg/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2020-12, Vol.260, p.127622-127622, Article 127622
Hauptverfasser: Kim, Yong-Chan, Lee, Sang-Ryong, Jeon, Hwang-Ju, Kim, Kyeongnam, Kim, Myoung-Jin, Choi, Sung-Deuk, Lee, Sung-Eun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, fluorene (FL), FL-1-carboxylic acid (FC-1), and FL-9-carboxylic acid (FC-9) were investigated to understand their acute toxicity by measuring inhibitory effects on hatching rates and developmental processes of zebrafish embryos (Danio rerio). For exposure concentrations up to 3000 μg/L, FC-1 alone showed acute toxicity at 1458 μg/L for LC50 value. FC-1 caused yolk sac and spinal deformities, and pericardial edema. Molecular studies were undertaken to understand FC-1 toxicity examining 61 genes after exposure to 5 μM (equivalent to LC20 value of FC-1) in embryos. In the FC-1-treated embryos, the expression of the cyp7a1 gene, involved in bile acid biosynthesis, was dramatically decreased, while the expression of the Il-1β gene involved in inflammation was remarkably increased. In addition to these findings, in FC-1-treated embryos, the expression of nppa gene related to the differentiation of the myocardium was 3-fold increased. On the other hand, cyp1a, cyp3a, ugt1a1, abcc4, mdr1, and sult1st1 responsible for detoxification of xenobiotics were upregulated in FC-9-treated embryos. Taken together, carboxylation on carbon 1 of FL increased acute toxicity in zebrafish embryos, and its toxicity might be related to morphological changes with modification of normal biological functions and lowered defense ability. [Display omitted] •Fluorene-1-carboxylic acid exhibited potent acute toxicities on zebrafish embryos, including high mortality rate.•Fluorene-1-carboxylic acid induced abnormal developments such as yolk sac, spinal deformities, and pericardial edema.•Fluorene-1-carboxylic acid down-regulated cyp7a1 gene expression involved in bile acid biosynthesis.•Carboxylation on 1-carbon in fluorine ring core might mediate metabolic modifications when compared to fluorine.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2020.127622