High-performance nanofiltration membranes with a sandwiched layer and a surface layer for desalination and environmental pollutant removal
To overcome the permeability-selectivity limitation and improve the performance of desalination membranes, novel methods and design strategies are needed to prepare new types of thin film composite (TFC) nanofiltration (NF) membranes. In this work, a modified TFC membrane with a sandwiched layer and...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2020-11, Vol.743, p.140766-140766, Article 140766 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To overcome the permeability-selectivity limitation and improve the performance of desalination membranes, novel methods and design strategies are needed to prepare new types of thin film composite (TFC) nanofiltration (NF) membranes. In this work, a modified TFC membrane with a sandwiched layer and a surface layer was fabricated through a facile additional two-step approach. The microfiltration (MF) substrate and TFC surface were modified by a cellulose nanocrystal (CNC) sandwiched layer and a polydopamine (PDA) layer, respectively. Scanning electron microscopy (SEM) analysis indicated that the support modified by CNCs presented a more homogeneous surface than the control TFC. Cross-sectional SEM images showed that the underneath MF support, CNC interlayer, polyamide layer and PDA deposition layer were perfectly integrated. The surface charge was determined by an electrophoretic analyzer and revealed that the CNC interlayer increased the membrane electronegativity, while the PDA layer presented the opposite effect. Compared to the control TFC membrane, the solute permeability and rejection of the resultant CNC-TFC-PDA membrane were simultaneously increased, indicating a breakthrough in the trade-off limitation. The modified membranes exhibited a high removal rate for Congo red, Rose Bengal, sodium lignosulfonate and alkaline lignin, suggesting their excellent rejection performance for textile dyes and lignin derivatives. Fouling tests indicated that both the interlayer and surface layer exhibited positive effects on fouling alleviation. The effects of each functional layer were explored, and the main factors for performance improvement, including the modified hydrophilicity, surface charge, pore size and surface roughness, were discussed.
[Display omitted]
•A novel type of TFC membrane was fabricated through a two-step approach.•The cellulose nanocrystal sandwiched layer dramatically increased permeability.•The deposition of the polydopamine layer improved the rejection of divalent salts.•The permeability-selectivity trade-off was overcome by the prepared membranes.•The membranes exhibited high-performance in environmental pollutant removal. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2020.140766 |