Neural coordination of bilateral power and precision finger movements
The dexterity of hands and fingers is related to the strength of control by cortico‐motoneuronal connections which exclusively exist in primates. The cortical command is associated with a task‐specific, rapid proprioceptive adaptation of forces applied by hands and fingers to an object. This neural...
Gespeichert in:
Veröffentlicht in: | The European journal of neuroscience 2021-12, Vol.54 (12), p.8249-8255 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dexterity of hands and fingers is related to the strength of control by cortico‐motoneuronal connections which exclusively exist in primates. The cortical command is associated with a task‐specific, rapid proprioceptive adaptation of forces applied by hands and fingers to an object. This neural control differs between “power grip” movements (e.g., reach and grasp of a cup) where hand and fingers act as a unity and “precision grip” movements (e.g., picking up a raspberry) where fingers move independently from the hand. In motor tasks requiring hands and fingers of both sides a “neural coupling” (reflected in bilateral reflex responses to unilateral stimulations) coordinates power grip movements (e.g., opening a bottle). In contrast, during bilateral precision movements, such as playing piano, the fingers of both hands move independently, due to a direct cortico‐motoneuronal control, while the hands are coupled (e.g., to maintain the rhythm between the two sides). While most studies on prehension concern unilateral hand movements, many activities of daily life are tackled by bilateral power grips where a neural coupling serves for an automatic movement performance. In primates this mode of motor control is supplemented by a system that enables the uni‐ or bilateral performance of skilled individual finger movements.
Most activities of daily life are tackled by power grips (e.g., opening a bottle) where neural coupling serves for an automatic control of movement performance when both hands are involved. In primates, this mode of motor control is supplemented by a system that enables to perform uni‐ or bilateral‐skilled individual finger movements (e.g., playing piano). |
---|---|
ISSN: | 0953-816X 1460-9568 |
DOI: | 10.1111/ejn.14911 |