Magnetically Collectable Nanocellulose-Coated Polymer Microparticles by Emulsion Templating

Magnetic nano/microparticles offer potential benefits for environmental applications such as water purification. However, achieving functional and stable surfaces remains a critical challenge for magnetic particle design. Nanocellulose, a naturally occurring nanofiber, is a promising surface materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2020-08, Vol.36 (31), p.9235-9240
Hauptverfasser: Fujisawa, Shuji, Kaku, Yuto, Kimura, Satoshi, Saito, Tsuguyuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic nano/microparticles offer potential benefits for environmental applications such as water purification. However, achieving functional and stable surfaces remains a critical challenge for magnetic particle design. Nanocellulose, a naturally occurring nanofiber, is a promising surface material candidate, owing to its ease of functionalization and chemical stability. Here, we developed a magnetically collectable nanocellulose-coated polymer microparticle synthesis method, based on Pickering emulsion templating. The average diameter of the core/shell microparticles was 2.7 μm, and they were well dispersed in water, owing to the coverage with surface-carboxylated nanocelluloses. Most magnetic Fe3O4 nanoparticles with a 30 nm diameter were encapsulated in the microparticles and enriched at the CNF/polymer interfaces. The nanocellulose shell showed high loading of cationic dye molecules. In addition, the nanocellulose-coated microparticles could be recovered even after the dye loading by exposing the aqueous dispersion to a magnetic field.
ISSN:0743-7463
1520-5827
DOI:10.1021/acs.langmuir.0c01533