Toward detection of conduction tissue during cardiac surgery: Light at the end of the tunnel?
Postoperative conduction block requiring lifetime pacemaker placement continues to be a considerable source of morbidity for patients undergoing repair of congenital heart defects. Damage to the cardiac conduction system (CCS) during surgical procedures is thought to be a major cause of conduction b...
Gespeichert in:
Veröffentlicht in: | Heart rhythm 2020-12, Vol.17 (12), p.2200-2207 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Postoperative conduction block requiring lifetime pacemaker placement continues to be a considerable source of morbidity for patients undergoing repair of congenital heart defects. Damage to the cardiac conduction system (CCS) during surgical procedures is thought to be a major cause of conduction block. Intraoperative identification and avoidance of the CCS is thus a key strategy to improve surgical outcomes. A number of approaches have been developed to avoid conduction tissue damage and mitigate morbidity. Here we review the historical and contemporary approaches for identification of conduction tissue during cardiac surgery. The established approach for intraoperative identification is based on anatomic landmarks established in extensive histologic studies of normal and diseased heart. We focus on landmarks to identify the sinus and atrioventricular nodes during cardiac surgery. We also review technologies explored for intraoperative tissue identification, including electrical impedance measurements and electrocardiography. We describe new optical approaches, in particular, and optical spectroscopy and fiberoptic confocal microscopy (FCM) for identification of CCS regions and working myocardium during surgery. As a template for translation of future technology developments, we describe research and regulatory pathways to translate FCM for cardiac surgery. We suggest that along with more robust approaches to surgeon training, including awareness of fundamental anatomic studies, optical approaches such as FCM show promise in aiding surgeons with repairs of heart defects. In particular, for complex defects, these approaches can complement landmark-based identification of conduction tissue and thus help to avoid injury to the CCS due to surgical procedures. |
---|---|
ISSN: | 1547-5271 1556-3871 |
DOI: | 10.1016/j.hrthm.2020.07.008 |