Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers
Van der Waals heterostructures obtained via stacking and twisting have been used to create moiré superlattices 1 , enabling new optical and electronic properties in solid-state systems. Moiré lattices in twisted bilayers of transition metal dichalcogenides (TMDs) result in exciton trapping 2 – 5 , h...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2020-09, Vol.15 (9), p.750-754 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Van der Waals heterostructures obtained via stacking and twisting have been used to create moiré superlattices
1
, enabling new optical and electronic properties in solid-state systems. Moiré lattices in twisted bilayers of transition metal dichalcogenides (TMDs) result in exciton trapping
2
–
5
, host Mott insulating and superconducting states
6
and act as unique Hubbard systems
7
–
9
whose correlated electronic states can be detected and manipulated optically. Structurally, these twisted heterostructures feature atomic reconstruction and domain formation
10
–
14
. However, due to the nanoscale size of moiré domains, the effects of atomic reconstruction on the electronic and excitonic properties have not been systematically investigated. Here we use near-0°-twist-angle MoSe
2
/MoSe
2
bilayers with large rhombohedral AB/BA domains
15
to directly probe the excitonic properties of individual domains with far-field optics. We show that this system features broken mirror/inversion symmetry, with the AB and BA domains supporting interlayer excitons with out-of-plane electric dipole moments in opposite directions. The dipole orientation of ground-state Γ–K interlayer excitons can be flipped with electric fields, while higher-energy K–K interlayer excitons undergo field-asymmetric hybridization with intralayer K–K excitons. Our study reveals the impact of crystal symmetry on TMD excitons and points to new avenues for realizing topologically non-trivial systems
16
,
17
, exotic metasurfaces
18
, collective excitonic phases
19
and quantum emitter arrays
20
,
21
via domain-pattern engineering.
Domain-resolved spectroscopy reveals the impact of local atomic registry and crystal symmetry on the exciton properties of individual domains in near-0°-twist-angle MoSe
2
/MoSe
2
. |
---|---|
ISSN: | 1748-3387 1748-3395 |
DOI: | 10.1038/s41565-020-0728-z |