Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers

Van der Waals heterostructures obtained via stacking and twisting have been used to create moiré superlattices 1 , enabling new optical and electronic properties in solid-state systems. Moiré lattices in twisted bilayers of transition metal dichalcogenides (TMDs) result in exciton trapping 2 – 5 , h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2020-09, Vol.15 (9), p.750-754
Hauptverfasser: Sung, Jiho, Zhou, You, Scuri, Giovanni, Zólyomi, Viktor, Andersen, Trond I., Yoo, Hyobin, Wild, Dominik S., Joe, Andrew Y., Gelly, Ryan J., Heo, Hoseok, Magorrian, Samuel J., Bérubé, Damien, Valdivia, Andrés M. Mier, Taniguchi, Takashi, Watanabe, Kenji, Lukin, Mikhail D., Kim, Philip, Fal’ko, Vladimir I., Park, Hongkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Van der Waals heterostructures obtained via stacking and twisting have been used to create moiré superlattices 1 , enabling new optical and electronic properties in solid-state systems. Moiré lattices in twisted bilayers of transition metal dichalcogenides (TMDs) result in exciton trapping 2 – 5 , host Mott insulating and superconducting states 6 and act as unique Hubbard systems 7 – 9 whose correlated electronic states can be detected and manipulated optically. Structurally, these twisted heterostructures feature atomic reconstruction and domain formation 10 – 14 . However, due to the nanoscale size of moiré domains, the effects of atomic reconstruction on the electronic and excitonic properties have not been systematically investigated. Here we use near-0°-twist-angle MoSe 2 /MoSe 2 bilayers with large rhombohedral AB/BA domains 15 to directly probe the excitonic properties of individual domains with far-field optics. We show that this system features broken mirror/inversion symmetry, with the AB and BA domains supporting interlayer excitons with out-of-plane electric dipole moments in opposite directions. The dipole orientation of ground-state Γ–K interlayer excitons can be flipped with electric fields, while higher-energy K–K interlayer excitons undergo field-asymmetric hybridization with intralayer K–K excitons. Our study reveals the impact of crystal symmetry on TMD excitons and points to new avenues for realizing topologically non-trivial systems 16 , 17 , exotic metasurfaces 18 , collective excitonic phases 19 and quantum emitter arrays 20 , 21 via domain-pattern engineering. Domain-resolved spectroscopy reveals the impact of local atomic registry and crystal symmetry on the exciton properties of individual domains in near-0°-twist-angle MoSe 2 /MoSe 2 .
ISSN:1748-3387
1748-3395
DOI:10.1038/s41565-020-0728-z