Motion correction and noise removing in lung diffusion-weighted MRI using low-rank decomposition
Lung diffusion-weighted magnetic resonance imaging (DWI) has shown a promising value in lung lesion detection, diagnosis, differentiation, and staging. However, the respiratory and cardiac motion, blood flow, and lung hysteresis may contribute to the blurring, resulting in unclear lung images. The i...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2020-09, Vol.58 (9), p.2095-2105 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2105 |
---|---|
container_issue | 9 |
container_start_page | 2095 |
container_title | Medical & biological engineering & computing |
container_volume | 58 |
creator | Wang, Xinhui Chen, Houjin Wan, Qi Li, Yanfeng Cai, Naxin Li, Xinchun Peng, Yahui |
description | Lung diffusion-weighted magnetic resonance imaging (DWI) has shown a promising value in lung lesion detection, diagnosis, differentiation, and staging. However, the respiratory and cardiac motion, blood flow, and lung hysteresis may contribute to the blurring, resulting in unclear lung images. The image blurring could adversely affect diagnosis performance. The purpose of this study is to reduce the DWI blurring and assess its positive effect on diagnosis. The retrospective study includes 71 patients. In this paper, a motion correction and noise removal method using low-rank decomposition is proposed, which can reduce the DWI blurring by exploit the spatiotemporal continuity sequences. The deblurring performances are evaluated by qualitative and quantitative assessment, and the performance of diagnosis of lung cancer is measured by area under curve (AUC). In the view of the qualitative assessment, the deformation of the lung mass is reduced, and the blurring of the lung tumor edge is alleviated. Noise in the apparent diffusion coefficient (ADC) map is greatly reduced. For quantitative assessment, mutual information (MI) and Pearson correlation coefficient (Pearson-Coff) are 1.30 and 0.82 before the decomposition and 1.40 and 0.85 after the decomposition. Both the difference in MI and Pearson-Coff are statistically significant (
p
|
doi_str_mv | 10.1007/s11517-020-02224-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2423517075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2423517075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-42515e3050682806958e70ba7077846254582be8dedfdc815351fbd9a3b73c8f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCFy_RfG7SoxQ_Ci2C6DnuJtmaupvUpGvx35t2BcGDh2GGmed9GV4AzjG6wgiJ64QxxwIignIRwqA4ACMsGIaIMXYIRgizfMJYHoOTlFYIEcwJG4HXRdi44AsdYrR6P1beFD64ZItou_Dp_LJwvmj73I1rmj5lCG6tW75trCkWT7Mir_KxDVsYK_9eGKtDtw7J7exOwVFTtcme_fQxeLm7fZ4-wPnj_Wx6M4eacrKBjHDMLUUclZJIVE64tALVlUBCSFYSzrgktZXGmsZoiTnluKnNpKK1oFo2dAwuB991DB-9TRvVuaRt21behj4pwkiWZDue0Ys_6Cr00efvMkUJKdEE00yRgdIxpBRto9bRdVX8UhipXehqCF3l0NU-dCWyiA6ilGG_tPHX-h_VN8TDg9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432260913</pqid></control><display><type>article</type><title>Motion correction and noise removing in lung diffusion-weighted MRI using low-rank decomposition</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Wang, Xinhui ; Chen, Houjin ; Wan, Qi ; Li, Yanfeng ; Cai, Naxin ; Li, Xinchun ; Peng, Yahui</creator><creatorcontrib>Wang, Xinhui ; Chen, Houjin ; Wan, Qi ; Li, Yanfeng ; Cai, Naxin ; Li, Xinchun ; Peng, Yahui</creatorcontrib><description>Lung diffusion-weighted magnetic resonance imaging (DWI) has shown a promising value in lung lesion detection, diagnosis, differentiation, and staging. However, the respiratory and cardiac motion, blood flow, and lung hysteresis may contribute to the blurring, resulting in unclear lung images. The image blurring could adversely affect diagnosis performance. The purpose of this study is to reduce the DWI blurring and assess its positive effect on diagnosis. The retrospective study includes 71 patients. In this paper, a motion correction and noise removal method using low-rank decomposition is proposed, which can reduce the DWI blurring by exploit the spatiotemporal continuity sequences. The deblurring performances are evaluated by qualitative and quantitative assessment, and the performance of diagnosis of lung cancer is measured by area under curve (AUC). In the view of the qualitative assessment, the deformation of the lung mass is reduced, and the blurring of the lung tumor edge is alleviated. Noise in the apparent diffusion coefficient (ADC) map is greatly reduced. For quantitative assessment, mutual information (MI) and Pearson correlation coefficient (Pearson-Coff) are 1.30 and 0.82 before the decomposition and 1.40 and 0.85 after the decomposition. Both the difference in MI and Pearson-Coff are statistically significant (
p
< 0.05). For the positive effect of deblurring on diagnosis of lung cancer, the AUC was improved from 0.731 to 0.841 using three-fold cross validation. We conclude that the low-rank matrix decomposition method is promising in reducing the errors in DWI lung images caused by noise and artifacts and improving diagnostics. Further investigations are warranted to understand the full utilities of the low-rank decomposition on lung DWI images.
Graphical abstract</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-020-02224-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Blood flow ; Blurring ; Computer Applications ; Correlation coefficient ; Correlation coefficients ; Decomposition ; Diagnosis ; Diffusion ; Diffusion coefficient ; Human Physiology ; Imaging ; Lung cancer ; Magnetic resonance imaging ; Medical imaging ; Noise ; Noise reduction ; Original Article ; Radiology ; Statistical analysis ; Utilities</subject><ispartof>Medical & biological engineering & computing, 2020-09, Vol.58 (9), p.2095-2105</ispartof><rights>International Federation for Medical and Biological Engineering 2020</rights><rights>International Federation for Medical and Biological Engineering 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-42515e3050682806958e70ba7077846254582be8dedfdc815351fbd9a3b73c8f3</citedby><cites>FETCH-LOGICAL-c352t-42515e3050682806958e70ba7077846254582be8dedfdc815351fbd9a3b73c8f3</cites><orcidid>0000-0003-1220-9306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-020-02224-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-020-02224-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Xinhui</creatorcontrib><creatorcontrib>Chen, Houjin</creatorcontrib><creatorcontrib>Wan, Qi</creatorcontrib><creatorcontrib>Li, Yanfeng</creatorcontrib><creatorcontrib>Cai, Naxin</creatorcontrib><creatorcontrib>Li, Xinchun</creatorcontrib><creatorcontrib>Peng, Yahui</creatorcontrib><title>Motion correction and noise removing in lung diffusion-weighted MRI using low-rank decomposition</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><description>Lung diffusion-weighted magnetic resonance imaging (DWI) has shown a promising value in lung lesion detection, diagnosis, differentiation, and staging. However, the respiratory and cardiac motion, blood flow, and lung hysteresis may contribute to the blurring, resulting in unclear lung images. The image blurring could adversely affect diagnosis performance. The purpose of this study is to reduce the DWI blurring and assess its positive effect on diagnosis. The retrospective study includes 71 patients. In this paper, a motion correction and noise removal method using low-rank decomposition is proposed, which can reduce the DWI blurring by exploit the spatiotemporal continuity sequences. The deblurring performances are evaluated by qualitative and quantitative assessment, and the performance of diagnosis of lung cancer is measured by area under curve (AUC). In the view of the qualitative assessment, the deformation of the lung mass is reduced, and the blurring of the lung tumor edge is alleviated. Noise in the apparent diffusion coefficient (ADC) map is greatly reduced. For quantitative assessment, mutual information (MI) and Pearson correlation coefficient (Pearson-Coff) are 1.30 and 0.82 before the decomposition and 1.40 and 0.85 after the decomposition. Both the difference in MI and Pearson-Coff are statistically significant (
p
< 0.05). For the positive effect of deblurring on diagnosis of lung cancer, the AUC was improved from 0.731 to 0.841 using three-fold cross validation. We conclude that the low-rank matrix decomposition method is promising in reducing the errors in DWI lung images caused by noise and artifacts and improving diagnostics. Further investigations are warranted to understand the full utilities of the low-rank decomposition on lung DWI images.
Graphical abstract</description><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Blood flow</subject><subject>Blurring</subject><subject>Computer Applications</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Decomposition</subject><subject>Diagnosis</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Human Physiology</subject><subject>Imaging</subject><subject>Lung cancer</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>Original Article</subject><subject>Radiology</subject><subject>Statistical analysis</subject><subject>Utilities</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOCFy_RfG7SoxQ_Ci2C6DnuJtmaupvUpGvx35t2BcGDh2GGmed9GV4AzjG6wgiJ64QxxwIignIRwqA4ACMsGIaIMXYIRgizfMJYHoOTlFYIEcwJG4HXRdi44AsdYrR6P1beFD64ZItou_Dp_LJwvmj73I1rmj5lCG6tW75trCkWT7Mir_KxDVsYK_9eGKtDtw7J7exOwVFTtcme_fQxeLm7fZ4-wPnj_Wx6M4eacrKBjHDMLUUclZJIVE64tALVlUBCSFYSzrgktZXGmsZoiTnluKnNpKK1oFo2dAwuB991DB-9TRvVuaRt21behj4pwkiWZDue0Ys_6Cr00efvMkUJKdEE00yRgdIxpBRto9bRdVX8UhipXehqCF3l0NU-dCWyiA6ilGG_tPHX-h_VN8TDg9w</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wang, Xinhui</creator><creator>Chen, Houjin</creator><creator>Wan, Qi</creator><creator>Li, Yanfeng</creator><creator>Cai, Naxin</creator><creator>Li, Xinchun</creator><creator>Peng, Yahui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1220-9306</orcidid></search><sort><creationdate>20200901</creationdate><title>Motion correction and noise removing in lung diffusion-weighted MRI using low-rank decomposition</title><author>Wang, Xinhui ; Chen, Houjin ; Wan, Qi ; Li, Yanfeng ; Cai, Naxin ; Li, Xinchun ; Peng, Yahui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-42515e3050682806958e70ba7077846254582be8dedfdc815351fbd9a3b73c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Blood flow</topic><topic>Blurring</topic><topic>Computer Applications</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Decomposition</topic><topic>Diagnosis</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Human Physiology</topic><topic>Imaging</topic><topic>Lung cancer</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>Original Article</topic><topic>Radiology</topic><topic>Statistical analysis</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xinhui</creatorcontrib><creatorcontrib>Chen, Houjin</creatorcontrib><creatorcontrib>Wan, Qi</creatorcontrib><creatorcontrib>Li, Yanfeng</creatorcontrib><creatorcontrib>Cai, Naxin</creatorcontrib><creatorcontrib>Li, Xinchun</creatorcontrib><creatorcontrib>Peng, Yahui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xinhui</au><au>Chen, Houjin</au><au>Wan, Qi</au><au>Li, Yanfeng</au><au>Cai, Naxin</au><au>Li, Xinchun</au><au>Peng, Yahui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion correction and noise removing in lung diffusion-weighted MRI using low-rank decomposition</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>58</volume><issue>9</issue><spage>2095</spage><epage>2105</epage><pages>2095-2105</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Lung diffusion-weighted magnetic resonance imaging (DWI) has shown a promising value in lung lesion detection, diagnosis, differentiation, and staging. However, the respiratory and cardiac motion, blood flow, and lung hysteresis may contribute to the blurring, resulting in unclear lung images. The image blurring could adversely affect diagnosis performance. The purpose of this study is to reduce the DWI blurring and assess its positive effect on diagnosis. The retrospective study includes 71 patients. In this paper, a motion correction and noise removal method using low-rank decomposition is proposed, which can reduce the DWI blurring by exploit the spatiotemporal continuity sequences. The deblurring performances are evaluated by qualitative and quantitative assessment, and the performance of diagnosis of lung cancer is measured by area under curve (AUC). In the view of the qualitative assessment, the deformation of the lung mass is reduced, and the blurring of the lung tumor edge is alleviated. Noise in the apparent diffusion coefficient (ADC) map is greatly reduced. For quantitative assessment, mutual information (MI) and Pearson correlation coefficient (Pearson-Coff) are 1.30 and 0.82 before the decomposition and 1.40 and 0.85 after the decomposition. Both the difference in MI and Pearson-Coff are statistically significant (
p
< 0.05). For the positive effect of deblurring on diagnosis of lung cancer, the AUC was improved from 0.731 to 0.841 using three-fold cross validation. We conclude that the low-rank matrix decomposition method is promising in reducing the errors in DWI lung images caused by noise and artifacts and improving diagnostics. Further investigations are warranted to understand the full utilities of the low-rank decomposition on lung DWI images.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11517-020-02224-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1220-9306</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2020-09, Vol.58 (9), p.2095-2105 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_2423517075 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Blood flow Blurring Computer Applications Correlation coefficient Correlation coefficients Decomposition Diagnosis Diffusion Diffusion coefficient Human Physiology Imaging Lung cancer Magnetic resonance imaging Medical imaging Noise Noise reduction Original Article Radiology Statistical analysis Utilities |
title | Motion correction and noise removing in lung diffusion-weighted MRI using low-rank decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A19%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20correction%20and%20noise%20removing%20in%20lung%20diffusion-weighted%20MRI%20using%20low-rank%20decomposition&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Wang,%20Xinhui&rft.date=2020-09-01&rft.volume=58&rft.issue=9&rft.spage=2095&rft.epage=2105&rft.pages=2095-2105&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-020-02224-7&rft_dat=%3Cproquest_cross%3E2423517075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432260913&rft_id=info:pmid/&rfr_iscdi=true |