Motion correction and noise removing in lung diffusion-weighted MRI using low-rank decomposition
Lung diffusion-weighted magnetic resonance imaging (DWI) has shown a promising value in lung lesion detection, diagnosis, differentiation, and staging. However, the respiratory and cardiac motion, blood flow, and lung hysteresis may contribute to the blurring, resulting in unclear lung images. The i...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2020-09, Vol.58 (9), p.2095-2105 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lung diffusion-weighted magnetic resonance imaging (DWI) has shown a promising value in lung lesion detection, diagnosis, differentiation, and staging. However, the respiratory and cardiac motion, blood flow, and lung hysteresis may contribute to the blurring, resulting in unclear lung images. The image blurring could adversely affect diagnosis performance. The purpose of this study is to reduce the DWI blurring and assess its positive effect on diagnosis. The retrospective study includes 71 patients. In this paper, a motion correction and noise removal method using low-rank decomposition is proposed, which can reduce the DWI blurring by exploit the spatiotemporal continuity sequences. The deblurring performances are evaluated by qualitative and quantitative assessment, and the performance of diagnosis of lung cancer is measured by area under curve (AUC). In the view of the qualitative assessment, the deformation of the lung mass is reduced, and the blurring of the lung tumor edge is alleviated. Noise in the apparent diffusion coefficient (ADC) map is greatly reduced. For quantitative assessment, mutual information (MI) and Pearson correlation coefficient (Pearson-Coff) are 1.30 and 0.82 before the decomposition and 1.40 and 0.85 after the decomposition. Both the difference in MI and Pearson-Coff are statistically significant (
p
|
---|---|
ISSN: | 0140-0118 1741-0444 |
DOI: | 10.1007/s11517-020-02224-7 |