Assessment of shipping emission factors through monitoring and modelling studies

In this study, 3990 movements of 629 different ships approaching to the Ambarlı port of Istanbul and 10,272 movements of 2798 different ships arriving at Kocaeli port which are the largest ports of Turkey were monitored for a year between September 1, 2017 and September 1, 2018. It is well known tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2020-11, Vol.743, p.140742-140742, Article 140742
Hauptverfasser: Ekmekçioğlu, Araks, Kuzu, S. Levent, Ünlügençoğlu, Kaan, Çelebi, Uğur Buğra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, 3990 movements of 629 different ships approaching to the Ambarlı port of Istanbul and 10,272 movements of 2798 different ships arriving at Kocaeli port which are the largest ports of Turkey were monitored for a year between September 1, 2017 and September 1, 2018. It is well known that ship exhaust emissions have a significant impact on pollutant and global warming agent mass inputs and diminish air quality around port areas. We calculated ship exhaust emissions for three different modes by ENTEC method. The annual estimated emissions were 72,802, 1430.4, 900.3, 105.3, 60.9, and 59 tons for CO2, NOx, SO2, PM10, VOC, and CO, respectively, in Ambarlı Port. Higher emissions were estimated for Kocaeli Port due to marine traffic intensity. The annual estimated emissions at Kocaeli Port were 134,120.8, 2655.1, 1652.3, 181.4, 108.3, and 106.4 tons for CO2, NOx, SO2, PM10, VOC, and CO, respectively. In order to determine the impact of ship emissions, we employed AERMOD air quality dispersion modelling. Ground-level PM10, NOx, and SO2 concentrations were calculated. Their spatial distribution was plotted and results were evaluated by air quality measurement station results. Only estimated SO2 concentrations were higher than the observed concentrations. We concluded that ENTEC calculations produce excessive SO2 concentrations. Because sulphur content of marine fuel may vary and recent amendments in the related regulations limit its amount to lower values. Advancement of on-board SO2 emission control on ships can also have a reducing effect on emitted SO2 emissions. As a result, we emphasize that current ENTEC emission factors don't represent SO2 emissions accurately. Further, the advancement of SO2 emissions factors is required. [Display omitted] •Emission factors may not represent real emissions.•We monitored and modelled airborne emissions.•Current ENTEC emission factors over estimate SO2 concentations.•New SO2 emission factors should be generated for shipping emissions.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.140742