Design and evaluation a kind of functional biomaterial for bone tissue engineering: Selenium/mesoporous bioactive glass nanospheres

[Display omitted] Conventional treatments of bone tumor involve removal followed by radiation and chemotherapeutic drugs that may have limitations and cause secondary damage. The development of functional filling biomaterial has led to a new strategy for tumor therapy. In this study, a novel therape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2020-11, Vol.579, p.654-666
Hauptverfasser: Hu, Meng, Fang, Jie, Zhang, Ying, Wang, Xiang, Zhong, Wenxing, Zhou, Zhufa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Conventional treatments of bone tumor involve removal followed by radiation and chemotherapeutic drugs that may have limitations and cause secondary damage. The development of functional filling biomaterial has led to a new strategy for tumor therapy. In this study, a novel therapeutic ion selenium doped mesoporous bioactive glasses (Se/MBG) nanospheres were successfully synthesized by a facile sol–gel technique using cetyl trimethyl ammonium bromide (CTAB) as the template, which had uniform spherical morphology (≈ 400 nm), high surface area (>400 m2/g) and mesopore volume (≈0.30 cm3/g). Results showed that hydroxyapatite formation ability and controllable doxorubicin (DOX) release and distinct degradation of Se/MBG nanospheres depended on the dose of Se4+. In vitro cell cultures showed that both Se/MBG and DOX-Se/MBG nanospheres had the culture time and dose dependent cytotoxicity to MG63 osteosarcoma cells. But DOX-Se/MBG nanospheres reduced the acute cytotoxicity to MG63 because of the co-operative effect of Se and DOX. Meanwhile, Se/MBG nanospheres were found to have selective cytotoxicity to cancer cells (MG63) and normal cells (MC3T3-E1), indicating that the prepared Se/MBG nanospheres had cell recognition function. These all note that the synthesized Se/MBG nanospheres can be used as a filling biomaterial for the bone tissue engineering.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2020.06.122