Gauss quadratures and Jacobi matrices for weight functions not of one sign
Construction of Gauss quadratures with prescribed knots via Jacobi matrices is extended to the case where not all orthogonal polynomials exist due to the weight function changing sign. An algorithm is described and is demonstrated by calculating the knots of Kronrod schemes and other Gauss quadratur...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 1984, Vol.43 (168), p.543-550 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Construction of Gauss quadratures with prescribed knots via Jacobi matrices is extended to the case where not all orthogonal polynomials exist due to the weight function changing sign. An algorithm is described and is demonstrated by calculating the knots of Kronrod schemes and other Gauss quadratures with prescribed knots. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/S0025-5718-1984-0758201-8 |