Asymmetric mass ratios for bright double neutron-star mergers

The discovery of a radioactively powered kilonova associated with the binary neutron-star merger GW170817 remains the only confirmed electromagnetic counterpart to a gravitational-wave event 1 , 2 . Observations of the late-time electromagnetic emission, however, do not agree with the expectations f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2020-07, Vol.583 (7815), p.211-214
Hauptverfasser: Ferdman, R. D., Freire, P. C. C., Perera, B. B. P., Pol, N., Camilo, F., Chatterjee, S., Cordes, J. M., Crawford, F., Hessels, J. W. T., Kaspi, V. M., McLaughlin, M. A., Parent, E., Stairs, I. H., van Leeuwen, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The discovery of a radioactively powered kilonova associated with the binary neutron-star merger GW170817 remains the only confirmed electromagnetic counterpart to a gravitational-wave event 1 , 2 . Observations of the late-time electromagnetic emission, however, do not agree with the expectations from standard neutron-star merger models. Although the large measured ejecta mass 3 , 4 could be explained by a progenitor system that is asymmetric in terms of the stellar component masses (that is, with a mass ratio q of 0.7 to 0.8) 5 , the known Galactic population of merging double neutron-star systems (that is, those that will coalesce within billions of years or less) has until now consisted only of nearly equal-mass ( q  > 0.9) binaries 6 . The pulsar PSR J1913+1102 is a double system in a five-hour, low-eccentricity (0.09) orbit, with an orbital separation of 1.8 solar radii 7 , and the two neutron stars are predicted to coalesce in 470 − 11 + 12 million years owing to gravitational-wave emission. Here we report that the masses of the pulsar and the companion neutron star, as measured by a dedicated pulsar timing campaign, are 1.62 ± 0.03 and 1.27 ± 0.03 solar masses, respectively. With a measured mass ratio of q  = 0.78 ± 0.03, this is the most asymmetric merging system reported so far. On the basis of this detection, our population synthesis analysis implies that such asymmetric binaries represent between 2 and 30 per cent (90 per cent confidence) of the total population of merging binaries. The coalescence of a member of this population offers a possible explanation for the anomalous properties of GW170817, including the observed kilonova emission from that event. Pulsar timing measurements show a mass ratio of about 0.8 for the double neutron-star system PSR J1913+1102, and population synthesis models indicate that such asymmetric systems represent 2–30% of merging binaries.
ISSN:0028-0836
1476-4687
DOI:10.1038/s41586-020-2439-x