Direct Evidence for Universal Statistics of Stationary Kardar-Parisi-Zhang Interfaces

The nonequilibrium steady state of the one-dimensional (1D) Kardar-Parisi-Zhang (KPZ) universality class has been studied in-depth by exact solutions, yet no direct experimental evidence of its characteristic statistical properties has been reported so far. This is arguably because, for an infinitel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-06, Vol.124 (25), p.1-250602, Article 250602
Hauptverfasser: Iwatsuka, Takayasu, Fukai, Yohsuke T., Takeuchi, Kazumasa A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nonequilibrium steady state of the one-dimensional (1D) Kardar-Parisi-Zhang (KPZ) universality class has been studied in-depth by exact solutions, yet no direct experimental evidence of its characteristic statistical properties has been reported so far. This is arguably because, for an infinitely large system, infinitely long time is needed to reach such a stationary state and also to converge to the predicted universal behavior. Here we circumvent this problem in the experimental system of growing liquid-crystal turbulence, by generating an initial condition that possesses a long-range property expected for the KPZ stationary state. The resulting interface fluctuations clearly show characteristic properties of the 1D stationary KPZ interfaces, including the convergence to the Baik-Rains distribution. We also identify finite-time corrections to the KPZ scaling laws, which turn out to play a major role in the direct test of the stationary KPZ interfaces. This paves the way to explore unsolved properties of the stationary KPZ interfaces experimentally, making possible connections to nonlinear fluctuating hydrodynamics and quantum spin chains as recent studies unveiled relation to the stationary KPZ.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.124.250602