Antimicrobial peptides-loaded smart chitosan hydrogel: Release behavior and antibacterial potential against antibiotic resistant clinical isolates
In this study, we synthesized thermo-responsive chitosan (TCTS) hydrogels, and loaded with different concentrations of antimicrobial peptide (AMP) (0, 4, 8 and 16 μg·ml−1) to fabricate an antibacterial wound dressing against resistant clinical isolates. Physico-chemical properties, release behavior,...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2020-12, Vol.164, p.855-862 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, we synthesized thermo-responsive chitosan (TCTS) hydrogels, and loaded with different concentrations of antimicrobial peptide (AMP) (0, 4, 8 and 16 μg·ml−1) to fabricate an antibacterial wound dressing against resistant clinical isolates. Physico-chemical properties, release behavior, cytobiocompatibility and antibacterial activity of the AMP-TCTS hydrogels against standard strain and resistant Acinetobacter baumannii were fully determined in vitro. The TCTS-40% β-glycerolphosphate hydrogels showed a gelation time of 15 min at 37 °C. 80% weight loss at day 35 with no changes in pH value was observed. AMP-TCTS hydrogels showed a burst release of AMP (around 40%) at day 1, and a controlled release up to day 7. A dramatic water uptake was observed at first 4 h, and then continued for 10 h in a steady manner. All the AMP-TCTS hydrogels showed excellent cytobiocompatibility for human fibroblasts. The TCTS showed no antibacterial activity against both standard strain and clinical isolates. All the AMP-TCTS hydrogels had strong antibacterial activity against standard strains, but only 16 μg·ml−1 showed antibacterial behavior against resistant A. baumannii. Our results strongly suggest the 16 μg·ml−1 AMP-TCTS hydrogel as an excellent antibacterial wound dressing against resistant A. baumannii, and now promises to proceed with pre-clinical investigations. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2020.07.011 |