Valorization of industrial xylan-rich hemicelluloses into water-soluble derivatives by in-situ acetylation in EmimAc ionic liquid

In this study, aimed at valorization of industrial xylan-rich hemicelluloses (a by-product of dissolving pulp process), water-soluble hemicelluloses were fabricated with mild acetylation in 1-ethyl-3-methylimidazolium acetate ionic liquid (EmimAc) and dichloroacetyl chloride (Cl2AcCl) system by a fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2020-11, Vol.163, p.457-463
Hauptverfasser: Zhu, Ruonan, Liu, Xin, Li, Lijun, Wang, Qi, Zhao, Qiang, Liu, Shijie, Feng, Wenjun, Xu, Feng, Zhang, Xueming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, aimed at valorization of industrial xylan-rich hemicelluloses (a by-product of dissolving pulp process), water-soluble hemicelluloses were fabricated with mild acetylation in 1-ethyl-3-methylimidazolium acetate ionic liquid (EmimAc) and dichloroacetyl chloride (Cl2AcCl) system by a facile and novel method. The structure of the acetylated hemicelluloses was characterized by FT-IR and NMR spectra. The resultant modified products could fully dissolve in water with the degree of substitution (DS) valued between 0.17 and 0.37. Structural characterization indicated that the modified hemicelluloses were chiefly composed of the (1 → 4)-linked β-D-Xylp backbone with hydroxyl or -COCH3 linked to O-2 and O-3 of the Xylp units. Moreover, the mild acetylation was achieved by one-pot method, in which the hemicelluloses reacted with mixed anhydride produced between EmimAc and Cl2AcCl rather than Cl2AcCl. Rheological behavior measurements revealed that acetylated hemicelluloses solutions showed shear-thinning behavior and indicated lower viscosity compared with those of the referenced hemicelluloses. The excellent water-solubility of industrial hemicelluloses would widen its application field and be easier for its conversion into desired chemicals. •Water-soluble hemicelluloses were innovatively prepared by in-situ acetylation.•Acetylated hemicelluloses with low DS between 0.17 and 0.37 were obtained.•The resultant water-soluble hemicelluloses exhibited shear-thinning behavior.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2020.06.289