Global Error Estimation with Runge—Kutta Methods

An analysis of global error estimation for Runge—Kutta solutions of ordinary differential equations is presented. The basic technique is that of Zadunaisky in which the global error is computed from a numerical solution of a neighbouring problem related to the main problem by some method of interpol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 1984-04, Vol.4 (2), p.169-184
Hauptverfasser: DORMAND, J. R., DUCKERS, R. R., PRINCE, P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An analysis of global error estimation for Runge—Kutta solutions of ordinary differential equations is presented. The basic technique is that of Zadunaisky in which the global error is computed from a numerical solution of a neighbouring problem related to the main problem by some method of interpolation. It is shown that Runge—Kutta formulae which permit valid global error estimation using low-degree interpolation can be developed, thus leading to more accurate and computationally convenient algorithms than was hitherto expected. Some special Runge—Kutta processes up to order 4 are presented together with numerical results.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/4.2.169