Multiferroic decorated Fe2O3 monolayer predicted from first principles

Two-dimensional (2D) multiferroics exhibit cross-control capacity between magnetic and electric responses in a reduced spatial domain, making them well suited for next-generation nanoscale devices; however, progress has been slow in developing materials with required characteristic properties. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-07, Vol.12 (27), p.14847-14852
Hauptverfasser: Shang, Jing, Li, Chun, Tang, Xiao, Du, Aijun, Liao, Ting, Gu, Yuantong, Ma, Yandong, Kou, Liangzhi, Chen, Changfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two-dimensional (2D) multiferroics exhibit cross-control capacity between magnetic and electric responses in a reduced spatial domain, making them well suited for next-generation nanoscale devices; however, progress has been slow in developing materials with required characteristic properties. Here we identify by first-principles calculations robust 2D multiferroic behaviors in decorated Fe2O3 monolayers, showcasing Li@Fe2O3 as a prototypical case, where ferroelectricity and ferromagnetism stem from the same origin, namely Fe d-orbital splitting induced by the Jahn–Teller distortion and associated crystal field changes. These findings establish strong material phenomena and elucidate the underlying physics mechanism in a family of truly 2D multiferroics that are highly promising for advanced device applications.
ISSN:2040-3364
2040-3372
DOI:10.1039/d0nr03391j