Computation-aided engineering of starch-debranching pullulanase from Bacillus thermoleovorans for enhanced thermostability

Pullulanases are widely used in food, medicine, and other industries because they specifically hydrolyze α-1,6-glycosidic linkages in starch and oligosaccharides. In addition, high-temperature thermostable pullulanase has multiple advantages, including decreasing saccharification solution viscosity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2020-09, Vol.104 (17), p.7551-7562
Hauptverfasser: Bi, Jiahua, Chen, Shuhui, Zhao, Xianghan, Nie, Yao, Xu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pullulanases are widely used in food, medicine, and other industries because they specifically hydrolyze α-1,6-glycosidic linkages in starch and oligosaccharides. In addition, high-temperature thermostable pullulanase has multiple advantages, including decreasing saccharification solution viscosity accompanied with enhanced mass transfer and reducing microbial contamination in starch hydrolysis. However, thermophilic pullulanase availability remains limited. Additionally, most do not meet starch-manufacturing requirements due to weak thermostability. Here, we developed a computation-aided strategy to engineer the thermophilic pullulanase from Bacillus thermoleovorans . First, three computational design predictors (FoldX, I-Mutant 3.0, and dDFIRE) were combined to predict stability changes introduced by mutations. After excluding conserved and catalytic sites, 17 mutants were identified. After further experimental verification, we confirmed six positive mutants. Among them, the G692M mutant had the highest thermostability improvement, with 3.8 °C increased T m and 2.1-fold longer half-life than the wild type at 70 °C. We then characterized the mechanism underlying increased thermostability, such as rigidity enhancement, closer conformation, and strengthened motion correlation using root mean square fluctuation (RMSF), principal component analysis (PCA), dynamic cross-correlation map (DCCM), and free energy landscape (FEL) analysis. Key points • A computation-aided strategy was developed to engineer pullulanase thermostability. • Seventeen mutants were identified by combining three computational design predictors. • The G692M mutant was obtained with increased T m and half-life at 70 °C.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-020-10764-z