Strongly correlated superfluid order parameters from dc Josephson supercurrents

In superconductors, electrons form a macroscopic wave function that has a definite phase. If two superconductors with different wave function phases are placed in contact with each other through an insulating link, a current will flow through this so-called Josephson's junction without any exte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-07, Vol.369 (6499), p.84-88
Hauptverfasser: Kwon, W. J., Del Pace, G., Panza, R., Inguscio, M., Zwerger, W., Zaccanti, M., Scazza, F., Roati, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In superconductors, electrons form a macroscopic wave function that has a definite phase. If two superconductors with different wave function phases are placed in contact with each other through an insulating link, a current will flow through this so-called Josephson's junction without any external voltage. Luick et al. and Kwon et al. observed an analogous phenomenon in a setup that involved two reservoirs of superfluid Fermi gases. Both groups measured the so-called current-phase relation: the dependence of the magnitude of the current on the relative phase. By tuning an external magnetic field, they were able to study how the interactions between fermions affected the nature of the superfluid state. Science , this issue p. 89 , p. 84 A Josephson junction was created between two Fermi gas superfluids. The direct-current (dc) Josephson effect provides a phase-sensitive tool for investigating superfluid order parameters. We report on the observation of dc Josephson supercurrents in strongly interacting fermionic superfluids across a tunneling barrier in the absence of any applied potential difference. For sufficiently strong barriers, we observed a sinusoidal current-phase relation, in agreement with Josephson’s seminal prediction. We mapped out the zero-resistance state and its breakdown as a function of junction parameters, extracting the Josephson critical current behavior. By comparing our results with an analytic model, we determined the pair condensate fraction throughout the Bardeen-Cooper-Schrieffer–Bose-Einstein condensation crossover. Our work suggests that coherent Josephson transport may be used to pin down superfluid order parameters in diverse atomic systems, even in the presence of strong correlations.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aaz2463