Counterfactual prediction is not only for causal inference
Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs)...
Gespeichert in:
Veröffentlicht in: | European journal of epidemiology 2020-07, Vol.35 (7), p.615-617 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 617 |
---|---|
container_issue | 7 |
container_start_page | 615 |
container_title | European journal of epidemiology |
container_volume | 35 |
creator | Dickerman, Barbra A. Hernán, Miguel A. |
description | Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs) to other features of the world (the outputs). Counterfactual prediction uses data to predict certain features of the world if the world had been different. |
doi_str_mv | 10.1007/s10654-020-00659-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2420644340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420644340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2006721b15dedd2171776aee77eec5fb44b10187c1a5269c8d61e606919c5baf3</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxS1UVBbaL8ABReqll5QZx7HjHiqhFbSVkLjQs-U4kyWrrL3YCRLfvoblX3vgNCPNb97M02PsGOEbAqjThCBrUQKHEnKny2aPLbBWVal4Iz6wBVS6KrnWcMAOU1oDQAO6_sgOKi55JTks2PdlmP1Esbdumu1YbCN1g5uG4IshFT5MRfDjfdGHWDg7p0wMvqdI3tEntt_bMdHnp3rE_lycXy9_lZdXP38vzy5LJ5SYSp5_UxxbrDvqOo4KlZKWSCkiV_etEC0CNsqhrbnUrukkkgSpUbu6tX11xH7sdLdzu6HOkZ-iHc02Dhsb702wg_l34ocbswp3RmX7EnkW-PokEMPtTGkymyE5GkfrKczJcMFBClEJyOiX_9B1mKPP9h4opVEIrDPFd5SLIaVI_cszCOYhGrOLxuRozGM0pslLJ29tvKw8Z5GBagekPPIriq-335H9C5mlmU8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427914415</pqid></control><display><type>article</type><title>Counterfactual prediction is not only for causal inference</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Dickerman, Barbra A. ; Hernán, Miguel A.</creator><creatorcontrib>Dickerman, Barbra A. ; Hernán, Miguel A.</creatorcontrib><description>Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs) to other features of the world (the outputs). Counterfactual prediction uses data to predict certain features of the world if the world had been different.</description><identifier>ISSN: 0393-2990</identifier><identifier>EISSN: 1573-7284</identifier><identifier>DOI: 10.1007/s10654-020-00659-8</identifier><identifier>PMID: 32623620</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Cardiology ; Causality ; Clinical Decision Rules ; Clinical medicine ; Clinical trials ; Commentary ; Confounding Factors, Epidemiologic ; Decision Making ; Epidemiologic Research Design ; Epidemiology ; Humans ; Infectious Diseases ; Medicine ; Medicine & Public Health ; Models, Statistical ; Oncology ; Predictions ; Public Health ; Statistical inference ; Validity</subject><ispartof>European journal of epidemiology, 2020-07, Vol.35 (7), p.615-617</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2006721b15dedd2171776aee77eec5fb44b10187c1a5269c8d61e606919c5baf3</citedby><cites>FETCH-LOGICAL-c474t-2006721b15dedd2171776aee77eec5fb44b10187c1a5269c8d61e606919c5baf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10654-020-00659-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10654-020-00659-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32623620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dickerman, Barbra A.</creatorcontrib><creatorcontrib>Hernán, Miguel A.</creatorcontrib><title>Counterfactual prediction is not only for causal inference</title><title>European journal of epidemiology</title><addtitle>Eur J Epidemiol</addtitle><addtitle>Eur J Epidemiol</addtitle><description>Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs) to other features of the world (the outputs). Counterfactual prediction uses data to predict certain features of the world if the world had been different.</description><subject>Algorithms</subject><subject>Cardiology</subject><subject>Causality</subject><subject>Clinical Decision Rules</subject><subject>Clinical medicine</subject><subject>Clinical trials</subject><subject>Commentary</subject><subject>Confounding Factors, Epidemiologic</subject><subject>Decision Making</subject><subject>Epidemiologic Research Design</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Models, Statistical</subject><subject>Oncology</subject><subject>Predictions</subject><subject>Public Health</subject><subject>Statistical inference</subject><subject>Validity</subject><issn>0393-2990</issn><issn>1573-7284</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9P3DAQxS1UVBbaL8ABReqll5QZx7HjHiqhFbSVkLjQs-U4kyWrrL3YCRLfvoblX3vgNCPNb97M02PsGOEbAqjThCBrUQKHEnKny2aPLbBWVal4Iz6wBVS6KrnWcMAOU1oDQAO6_sgOKi55JTks2PdlmP1Esbdumu1YbCN1g5uG4IshFT5MRfDjfdGHWDg7p0wMvqdI3tEntt_bMdHnp3rE_lycXy9_lZdXP38vzy5LJ5SYSp5_UxxbrDvqOo4KlZKWSCkiV_etEC0CNsqhrbnUrukkkgSpUbu6tX11xH7sdLdzu6HOkZ-iHc02Dhsb702wg_l34ocbswp3RmX7EnkW-PokEMPtTGkymyE5GkfrKczJcMFBClEJyOiX_9B1mKPP9h4opVEIrDPFd5SLIaVI_cszCOYhGrOLxuRozGM0pslLJ29tvKw8Z5GBagekPPIriq-335H9C5mlmU8</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Dickerman, Barbra A.</creator><creator>Hernán, Miguel A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T2</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200701</creationdate><title>Counterfactual prediction is not only for causal inference</title><author>Dickerman, Barbra A. ; Hernán, Miguel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2006721b15dedd2171776aee77eec5fb44b10187c1a5269c8d61e606919c5baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cardiology</topic><topic>Causality</topic><topic>Clinical Decision Rules</topic><topic>Clinical medicine</topic><topic>Clinical trials</topic><topic>Commentary</topic><topic>Confounding Factors, Epidemiologic</topic><topic>Decision Making</topic><topic>Epidemiologic Research Design</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Models, Statistical</topic><topic>Oncology</topic><topic>Predictions</topic><topic>Public Health</topic><topic>Statistical inference</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dickerman, Barbra A.</creatorcontrib><creatorcontrib>Hernán, Miguel A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dickerman, Barbra A.</au><au>Hernán, Miguel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Counterfactual prediction is not only for causal inference</atitle><jtitle>European journal of epidemiology</jtitle><stitle>Eur J Epidemiol</stitle><addtitle>Eur J Epidemiol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>35</volume><issue>7</issue><spage>615</spage><epage>617</epage><pages>615-617</pages><issn>0393-2990</issn><eissn>1573-7284</eissn><abstract>Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs) to other features of the world (the outputs). Counterfactual prediction uses data to predict certain features of the world if the world had been different.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32623620</pmid><doi>10.1007/s10654-020-00659-8</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0393-2990 |
ispartof | European journal of epidemiology, 2020-07, Vol.35 (7), p.615-617 |
issn | 0393-2990 1573-7284 |
language | eng |
recordid | cdi_proquest_miscellaneous_2420644340 |
source | Jstor Complete Legacy; MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Algorithms Cardiology Causality Clinical Decision Rules Clinical medicine Clinical trials Commentary Confounding Factors, Epidemiologic Decision Making Epidemiologic Research Design Epidemiology Humans Infectious Diseases Medicine Medicine & Public Health Models, Statistical Oncology Predictions Public Health Statistical inference Validity |
title | Counterfactual prediction is not only for causal inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Counterfactual%20prediction%20is%20not%20only%20for%20causal%20inference&rft.jtitle=European%20journal%20of%20epidemiology&rft.au=Dickerman,%20Barbra%20A.&rft.date=2020-07-01&rft.volume=35&rft.issue=7&rft.spage=615&rft.epage=617&rft.pages=615-617&rft.issn=0393-2990&rft.eissn=1573-7284&rft_id=info:doi/10.1007/s10654-020-00659-8&rft_dat=%3Cproquest_pubme%3E2420644340%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427914415&rft_id=info:pmid/32623620&rfr_iscdi=true |