Counterfactual prediction is not only for causal inference

Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of epidemiology 2020-07, Vol.35 (7), p.615-617
Hauptverfasser: Dickerman, Barbra A., Hernán, Miguel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 617
container_issue 7
container_start_page 615
container_title European journal of epidemiology
container_volume 35
creator Dickerman, Barbra A.
Hernán, Miguel A.
description Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs) to other features of the world (the outputs). Counterfactual prediction uses data to predict certain features of the world if the world had been different.
doi_str_mv 10.1007/s10654-020-00659-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2420644340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2420644340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-2006721b15dedd2171776aee77eec5fb44b10187c1a5269c8d61e606919c5baf3</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxS1UVBbaL8ABReqll5QZx7HjHiqhFbSVkLjQs-U4kyWrrL3YCRLfvoblX3vgNCPNb97M02PsGOEbAqjThCBrUQKHEnKny2aPLbBWVal4Iz6wBVS6KrnWcMAOU1oDQAO6_sgOKi55JTks2PdlmP1Esbdumu1YbCN1g5uG4IshFT5MRfDjfdGHWDg7p0wMvqdI3tEntt_bMdHnp3rE_lycXy9_lZdXP38vzy5LJ5SYSp5_UxxbrDvqOo4KlZKWSCkiV_etEC0CNsqhrbnUrukkkgSpUbu6tX11xH7sdLdzu6HOkZ-iHc02Dhsb702wg_l34ocbswp3RmX7EnkW-PokEMPtTGkymyE5GkfrKczJcMFBClEJyOiX_9B1mKPP9h4opVEIrDPFd5SLIaVI_cszCOYhGrOLxuRozGM0pslLJ29tvKw8Z5GBagekPPIriq-335H9C5mlmU8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427914415</pqid></control><display><type>article</type><title>Counterfactual prediction is not only for causal inference</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Dickerman, Barbra A. ; Hernán, Miguel A.</creator><creatorcontrib>Dickerman, Barbra A. ; Hernán, Miguel A.</creatorcontrib><description>Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs) to other features of the world (the outputs). Counterfactual prediction uses data to predict certain features of the world if the world had been different.</description><identifier>ISSN: 0393-2990</identifier><identifier>EISSN: 1573-7284</identifier><identifier>DOI: 10.1007/s10654-020-00659-8</identifier><identifier>PMID: 32623620</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Cardiology ; Causality ; Clinical Decision Rules ; Clinical medicine ; Clinical trials ; Commentary ; Confounding Factors, Epidemiologic ; Decision Making ; Epidemiologic Research Design ; Epidemiology ; Humans ; Infectious Diseases ; Medicine ; Medicine &amp; Public Health ; Models, Statistical ; Oncology ; Predictions ; Public Health ; Statistical inference ; Validity</subject><ispartof>European journal of epidemiology, 2020-07, Vol.35 (7), p.615-617</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-2006721b15dedd2171776aee77eec5fb44b10187c1a5269c8d61e606919c5baf3</citedby><cites>FETCH-LOGICAL-c474t-2006721b15dedd2171776aee77eec5fb44b10187c1a5269c8d61e606919c5baf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10654-020-00659-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10654-020-00659-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32623620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dickerman, Barbra A.</creatorcontrib><creatorcontrib>Hernán, Miguel A.</creatorcontrib><title>Counterfactual prediction is not only for causal inference</title><title>European journal of epidemiology</title><addtitle>Eur J Epidemiol</addtitle><addtitle>Eur J Epidemiol</addtitle><description>Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs) to other features of the world (the outputs). Counterfactual prediction uses data to predict certain features of the world if the world had been different.</description><subject>Algorithms</subject><subject>Cardiology</subject><subject>Causality</subject><subject>Clinical Decision Rules</subject><subject>Clinical medicine</subject><subject>Clinical trials</subject><subject>Commentary</subject><subject>Confounding Factors, Epidemiologic</subject><subject>Decision Making</subject><subject>Epidemiologic Research Design</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Infectious Diseases</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Models, Statistical</subject><subject>Oncology</subject><subject>Predictions</subject><subject>Public Health</subject><subject>Statistical inference</subject><subject>Validity</subject><issn>0393-2990</issn><issn>1573-7284</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9P3DAQxS1UVBbaL8ABReqll5QZx7HjHiqhFbSVkLjQs-U4kyWrrL3YCRLfvoblX3vgNCPNb97M02PsGOEbAqjThCBrUQKHEnKny2aPLbBWVal4Iz6wBVS6KrnWcMAOU1oDQAO6_sgOKi55JTks2PdlmP1Esbdumu1YbCN1g5uG4IshFT5MRfDjfdGHWDg7p0wMvqdI3tEntt_bMdHnp3rE_lycXy9_lZdXP38vzy5LJ5SYSp5_UxxbrDvqOo4KlZKWSCkiV_etEC0CNsqhrbnUrukkkgSpUbu6tX11xH7sdLdzu6HOkZ-iHc02Dhsb702wg_l34ocbswp3RmX7EnkW-PokEMPtTGkymyE5GkfrKczJcMFBClEJyOiX_9B1mKPP9h4opVEIrDPFd5SLIaVI_cszCOYhGrOLxuRozGM0pslLJ29tvKw8Z5GBagekPPIriq-335H9C5mlmU8</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Dickerman, Barbra A.</creator><creator>Hernán, Miguel A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T2</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200701</creationdate><title>Counterfactual prediction is not only for causal inference</title><author>Dickerman, Barbra A. ; Hernán, Miguel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-2006721b15dedd2171776aee77eec5fb44b10187c1a5269c8d61e606919c5baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Cardiology</topic><topic>Causality</topic><topic>Clinical Decision Rules</topic><topic>Clinical medicine</topic><topic>Clinical trials</topic><topic>Commentary</topic><topic>Confounding Factors, Epidemiologic</topic><topic>Decision Making</topic><topic>Epidemiologic Research Design</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Infectious Diseases</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Models, Statistical</topic><topic>Oncology</topic><topic>Predictions</topic><topic>Public Health</topic><topic>Statistical inference</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dickerman, Barbra A.</creatorcontrib><creatorcontrib>Hernán, Miguel A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dickerman, Barbra A.</au><au>Hernán, Miguel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Counterfactual prediction is not only for causal inference</atitle><jtitle>European journal of epidemiology</jtitle><stitle>Eur J Epidemiol</stitle><addtitle>Eur J Epidemiol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>35</volume><issue>7</issue><spage>615</spage><epage>617</epage><pages>615-617</pages><issn>0393-2990</issn><eissn>1573-7284</eissn><abstract>Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs) to other features of the world (the outputs). Counterfactual prediction uses data to predict certain features of the world if the world had been different.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>32623620</pmid><doi>10.1007/s10654-020-00659-8</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0393-2990
ispartof European journal of epidemiology, 2020-07, Vol.35 (7), p.615-617
issn 0393-2990
1573-7284
language eng
recordid cdi_proquest_miscellaneous_2420644340
source Jstor Complete Legacy; MEDLINE; Springer Nature - Complete Springer Journals
subjects Algorithms
Cardiology
Causality
Clinical Decision Rules
Clinical medicine
Clinical trials
Commentary
Confounding Factors, Epidemiologic
Decision Making
Epidemiologic Research Design
Epidemiology
Humans
Infectious Diseases
Medicine
Medicine & Public Health
Models, Statistical
Oncology
Predictions
Public Health
Statistical inference
Validity
title Counterfactual prediction is not only for causal inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Counterfactual%20prediction%20is%20not%20only%20for%20causal%20inference&rft.jtitle=European%20journal%20of%20epidemiology&rft.au=Dickerman,%20Barbra%20A.&rft.date=2020-07-01&rft.volume=35&rft.issue=7&rft.spage=615&rft.epage=617&rft.pages=615-617&rft.issn=0393-2990&rft.eissn=1573-7284&rft_id=info:doi/10.1007/s10654-020-00659-8&rft_dat=%3Cproquest_pubme%3E2420644340%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427914415&rft_id=info:pmid/32623620&rfr_iscdi=true