Counterfactual prediction is not only for causal inference
Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs)...
Gespeichert in:
Veröffentlicht in: | European journal of epidemiology 2020-07, Vol.35 (7), p.615-617 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs) to other features of the world (the outputs). Counterfactual prediction uses data to predict certain features of the world if the world had been different. |
---|---|
ISSN: | 0393-2990 1573-7284 |
DOI: | 10.1007/s10654-020-00659-8 |