Counterfactual prediction is not only for causal inference

Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of epidemiology 2020-07, Vol.35 (7), p.615-617
Hauptverfasser: Dickerman, Barbra A., Hernán, Miguel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clinical researchers generate and analyze health data for three classes of tasks: description, prediction, and counterfactual prediction [1]. Description uses data to provide a quantitative summary of certain features of the world. Prediction uses data to map some features of the world (the inputs) to other features of the world (the outputs). Counterfactual prediction uses data to predict certain features of the world if the world had been different.
ISSN:0393-2990
1573-7284
DOI:10.1007/s10654-020-00659-8