R-ELMNet: Regularized extreme learning machine network

Principal component analysis network (PCANet), as an unsupervised shallow network, demonstrates noticeable effectiveness on datasets of various volumes. It carries a two-layer convolution with PCA as filter learning method, followed by a block-wise histogram post-processing stage. Following the stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2020-10, Vol.130, p.49-59
Hauptverfasser: Zhang, Guanghao, Li, Yue, Cui, Dongshun, Mao, Shangbo, Huang, Guang-Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Principal component analysis network (PCANet), as an unsupervised shallow network, demonstrates noticeable effectiveness on datasets of various volumes. It carries a two-layer convolution with PCA as filter learning method, followed by a block-wise histogram post-processing stage. Following the structure of PCANet, extreme learning machine auto-encoder (ELM-AE) variants are employed to replace the PCA’s role, which come from extreme learning machine network (ELMNet) and hierarchical ELMNet. ELMNet emphasizes the importance of orthogonal projection while overlooking non-linearity. The latter introduces complex pre-processing to overcome drawback of non-linear ELM-AE. In this paper, we analyze intrinsic characteristics of ELM-AE variants and accordingly propose a regularized ELM-AE, which combines non-linearity learning capability and approximately orthogonal projection. Experiments on image classification show the effectiveness compared to supervised convolutional neural networks and related shallow networks on unsupervised feature learning.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2020.06.009