Preliminary investigations of protein crystal growth using the space shuttle
Protein crystal growth in space is of interest because of the potential applications for unique studies of crystallization processes. Theoretical and experimental research indicates that gravitational fields produce density-driven convective flow patterns which can influence crystal growth, and thes...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 1986-08, Vol.76 (3), p.681-693 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protein crystal growth in space is of interest because of the potential applications for unique studies of crystallization processes. Theoretical and experimental research indicates that gravitational fields produce density-driven convective flow patterns which can influence crystal growth, and these convective effects can be controlled under microgravity conditions. Microgravity can also be used to control sedimentation effects. As part of a program to investigate the influence of gravity on protein crystal growth, ground and shuttle-based experiments are in progress, and suitable techniques and equipment for protein crystal growth in space are being developed. The research program includes several phases of hardware development, beginning with a simple prototype system, and evolving to an automated protein crystal growth unit that will permit the major variables in protein crystallization to be monitored and controlled during the crystal growth processes. As part of the first step in hardware development, protein crystal growth experiments have been performed on four different shuttle flight missions. |
---|---|
ISSN: | 0022-0248 1873-5002 |
DOI: | 10.1016/0022-0248(86)90185-5 |