Controlling Binder Adhesion to Impact Electrode Mesostructures and Transport
The complex three-phase composition of lithium-ion battery electrodes, containing an ion-conducting pore phase, a nanoporous electron-conducting carbon binder domain (CBD) phase, and an active material (AM) phase, provides several avenues of mesostructural engineering to enhance battery performance....
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-08, Vol.12 (31), p.34919-34930 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The complex three-phase composition of lithium-ion battery electrodes, containing an ion-conducting pore phase, a nanoporous electron-conducting carbon binder domain (CBD) phase, and an active material (AM) phase, provides several avenues of mesostructural engineering to enhance battery performance. We demonstrate a promising strategy for engineering electrode mesostructures by controlling the strength of adhesion between the AM and CBD phases. Using high-fidelity, physics-based colloidal and granular dynamics simulations, we predict that this strategy can provide significant control over electrochemical transport-relevant properties such as ionic conductivity, electronic conductivity, and available AM-electrolyte interface area. Importantly, the proposed strategy could be experimentally realized through surface functionalization of the AM and CBD phases and would be compatible with traditional electrode manufacturing methods. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c08251 |