The effect of dihydropyrazines on lipopolysaccharide-stimulated human hepatoma HepG2 cells via regulating the TLR4-MyD88-mediated NF-κB signaling pathway

Dihydropyrazines (DHPs), including 3-hydro-2,2,5,6-tetramethylpyrazine (DHP-3), are glycation products that are spontaneously generated in vivo and ingested via food. DHPs generate various radicals and reactive oxygen species (ROS), which can induce the expression of several antioxidant genes in Hep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of toxicological sciences 2020, Vol.45(7), pp.401-409
Hauptverfasser: Esaki, Madoka, Ishida, Takumi, Miyauchi, Yuu, Takechi, Shinji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dihydropyrazines (DHPs), including 3-hydro-2,2,5,6-tetramethylpyrazine (DHP-3), are glycation products that are spontaneously generated in vivo and ingested via food. DHPs generate various radicals and reactive oxygen species (ROS), which can induce the expression of several antioxidant genes in HepG2 cells. However, detailed information on DHP-response pathways remains elusive. To address this issue, we investigated the effects of DHP-3 on the nuclear factor-κB (NF-κB) pathway, a ROS-sensitive signaling pathway. In lipopolysaccharide-stimulated (LPS-stimulated) HepG2 cells, DHP-3 decreased phosphorylation levels of inhibitor of NF-κB (IκB) and NF-κB p65, and nuclear translocation of NF-κB p65. In addition, DHP-3 reduced the expression of Toll-like receptor 4 (TLR4) and the adaptor protein myeloid differentiation primary response gene 88 (MyD88). Moreover, DHP-3 suppressed the mRNA expression of tumor necrosis factor-alpha (TNFα), and interleukin-1 beta (IL-1β). Taken together, these results suggest that DHP-3 acts as a negative regulator of the TLR4-MyD88-mediated NF-κB signaling pathway.
ISSN:0388-1350
1880-3989
DOI:10.2131/jts.45.401