Experimental Implementation of Universal Nonadiabatic Geometric Quantum Gates in a Superconducting Circuit

Using geometric phases to realize noise-resilient quantum computing is an important method to enhance the control fidelity. In this work, we experimentally realize a universal nonadiabatic geometric quantum gate set in a superconducting qubit chain. We characterize the realized single- and two-qubit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-06, Vol.124 (23), p.1-230503, Article 230503
Hauptverfasser: Xu, Y., Hua, Z., Chen, Tao, Pan, X., Li, X., Han, J., Cai, W., Ma, Y., Wang, H., Song, Y. P., Xue, Zheng-Yuan, Sun, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using geometric phases to realize noise-resilient quantum computing is an important method to enhance the control fidelity. In this work, we experimentally realize a universal nonadiabatic geometric quantum gate set in a superconducting qubit chain. We characterize the realized single- and two-qubit geometric gates with both quantum process tomography and randomized benchmarking methods. The measured average fidelities for the single-qubit rotation gates and two-qubit controlled-Z gate are 0.9977(1) and 0.977(9), respectively. Besides, we also experimentally demonstrate the noise-resilient feature of the realized single-qubit geometric gates by comparing their performance with the conventional dynamical gates with different types of errors in the control field. Thus, our experiment proves a way to achieve high-fidelity geometric quantum gates for robust quantum computation.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.124.230503