Ultrasensitive Phototransistor Based on WSe2–MoS2 van der Waals Heterojunction
Band engineering using the van der Waals heterostructure of two-dimensional materials allows for the realization of high-performance optoelectronic devices by providing an ultrathin and uniform PN junction with sharp band edges. In this study, a highly sensitive photodetector based on the van der Wa...
Gespeichert in:
Veröffentlicht in: | Nano letters 2020-08, Vol.20 (8), p.5741-5748 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Band engineering using the van der Waals heterostructure of two-dimensional materials allows for the realization of high-performance optoelectronic devices by providing an ultrathin and uniform PN junction with sharp band edges. In this study, a highly sensitive photodetector based on the van der Waals heterostructure of WSe2 and MoS2 was developed. The MoS2 was utilized as the channel for a phototransistor, whereas the WSe2–MoS2 PN junction in the out-of-plane orientation was utilized as a charge transfer layer. The vertical built-in electric field in the PN junction separated the photogenerated carriers, thus leading to a high photoconductive gain of 106. The proposed phototransistor exhibited an excellent performance, namely, a high photoresponsivity of 2700 A/W, specific detectivity of 5 × 1011 Jones, and response time of 17 ms. The proposed scheme in conjunction with the large-area synthesis technology of two-dimensional materials contributes significantly to practical photodetector applications. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.0c01460 |