Amelioration of PM2.5-induced lung toxicity in rats by nutritional supplementation with biochanin A
Epidemiological studies have shown that particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) is closely associated with human health issues, especially pulmonary diseases such as chronic obstructive pulmonary disease (COPD), asthma and lung cancer. In this study, particles were c...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology and environmental safety 2020-10, Vol.202, p.110878-110878, Article 110878 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epidemiological studies have shown that particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) is closely associated with human health issues, especially pulmonary diseases such as chronic obstructive pulmonary disease (COPD), asthma and lung cancer. In this study, particles were characterized by scanning electron microscopy (SEM), microbeam energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC). A rat model of PM2.5 exposure was established by nonsurgical intratracheal instillation, and the effects of biochanin A (BCA) treatment were examined. BCA showed a protective effect; it reduced PM2.5-induced apoptosis and the production of proinflammatory factors, such as tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), interleukin-6 (IL-6), and the chemokine interleukin-8 (IL-8), as measured using ELISA. These effects were accompanied by increases in the levels of antioxidant enzymes and decreases in the levels of malondialdehyde (MDA), lactate dehydrogenase (LDH) and alkaline phosphatase (AKP). Furthermore, isobaric tag for relative and absolute quantitation (iTRAQ)-based analytical techniques and bioinformatics tools were used to identify putative biomarkers, including XRCC1, MP2K5, IGJ, and F1LQ12, and the results were verified by Western blot analysis. In conclusion, our findings have scientific significance for the application of flavonoids in preventive and therapeutic strategies for PM2.5-associated pulmonary diseases and for the promotion of human health.
[Display omitted]
•PM2.5 can induce oxidative stress, inflammatory response and immune regulation.•PM2.5 induces 35 abnormal proteins expression and 4 differently expressed proteins.•Biochanin A can alleviate the PM2.5-induced lung toxicity in rats. |
---|---|
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2020.110878 |