MicroRNAs in chronic airway diseases: Clinical correlation and translational applications

Venn diagram showing unique and common miRNAs implicated in asthma. [Display omitted] MicroRNAs (miRNAs) are short single-stranded RNAs that have pivotal roles in disease pathophysiology through transcriptional and translational modulation of important genes. It has been implicated in the developmen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacological research 2020-10, Vol.160, p.105045-105045, Article 105045
Hauptverfasser: Tan, Bryce W.Q., Sim, Wei Liang, Cheong, Jit Kong, Kuan, Win Sen, Tran, Thai, Lim, Hui Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Venn diagram showing unique and common miRNAs implicated in asthma. [Display omitted] MicroRNAs (miRNAs) are short single-stranded RNAs that have pivotal roles in disease pathophysiology through transcriptional and translational modulation of important genes. It has been implicated in the development of many diseases, such as stroke, cardiovascular conditions, cancers and inflammatory airway diseases. There is recent evidence that miRNAs play important roles in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD), and could help to distinguish between T2-low (non-eosinophilic, steroid-insensitive) versus T2-high (eosinophilic, steroid-sensitive) disease endotypes. As these are the two most prevalent chronic respiratory diseases globally, with rising disease burden, miRNA research might lead to the development of new diagnostic and therapeutic targets. Research involving miRNAs in airway disease is challenging because: (i) asthma and COPD are heterogeneous inflammatory airway diseases; there are overlapping but distinct inter- and intra-disease differences in the immunological pathophysiology, (ii) there exists more than 2000 known miRNAs and a single miRNA can regulate multiple targets, (iii) differential effects of miRNAs could be present in different cellular subtypes and tissues, and (iv) dysregulated miRNA expression might be a direct consequence of an indirect effect of airway disease onset or progression. As miRNAs are actively secreted in fluids and remain relatively stable, they have the potential for biomarker development and therapeutic targets. In this review, we summarize the preclinical data on potential miRNA biomarkers that mediate different pathophysiological mechanisms in airway disease. We discuss the framework for biomarker development using miRNA and highlight the need for careful patient characterization and endotyping in the screening and validation cohorts, profiling both airway and blood samples to determine the biological fluids of choice in different disease states or severity, and adopting an untargeted approach. Collaboration between the various stakeholders - pharmaceutical companies, laboratory professionals and clinician-scientists is crucial to reduce the difficulties and cost required to bring miRNA research into the translational stage for airway diseases.
ISSN:1043-6618
1096-1186
DOI:10.1016/j.phrs.2020.105045