Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators

As the world marches into the era of the Internet of Things (IoT), the practice of human health care is on the cusp of a revolution, driven by an unprecedented level of personalization enabled by a variety of wearable bioelectronics. A sustainable and wearable energy solution is highly desired , but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-09, Vol.20 (9), p.6404-6411
Hauptverfasser: Jin, Long, Xiao, Xiao, Deng, Weili, Nashalian, Ardo, He, Daren, Raveendran, Vidhur, Yan, Cheng, Su, Hai, Chu, Xiang, Yang, Tao, Li, Wen, Yang, Weiqing, Chen, Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As the world marches into the era of the Internet of Things (IoT), the practice of human health care is on the cusp of a revolution, driven by an unprecedented level of personalization enabled by a variety of wearable bioelectronics. A sustainable and wearable energy solution is highly desired , but challenges still remain in its development. Here, we report a high-performance wearable electricity generation approach by manipulating the relative permittivity of a triboelectric nanogenerator (TENG). A compatible active carbon (AC)-doped polyvinylidene fluoride (AC@PVDF) composite film was invented with high relative permittivity and a specific surface area for wearable biomechanical energy harvesting. Compared with the pure PVDF, the 0.8% AC@PVDF film-based TENG obtained an enhancement in voltage, current, and power by 2.5, 3.5, and 9.8 times, respectively. This work reports a stable, cost-effective, and scalable approach to improve the performance of the triboelectric nanogenerator for wearable biomechanical energy harvesting, thus rendering a sustainable and pervasive energy solution for on-body electronics.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.0c01987