IL-37d Negatively Regulates NLRP3 Transcription via Receptor-mediated Pathway and Alleviates DSS-induced Colitis
Abstract Background Interleukin-37 (IL-37) is a new negative immune regulator. It has 5 splicing forms, IL-37a–e, and most research mainly focuses on IL-37b functions in diverse diseases. Our previous research found that IL-37d inhibits lipopolysaccharide-induced inflammation in endotoxemia through...
Gespeichert in:
Veröffentlicht in: | Inflammatory bowel diseases 2021-01, Vol.27 (1), p.84-93 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Background
Interleukin-37 (IL-37) is a new negative immune regulator. It has 5 splicing forms, IL-37a–e, and most research mainly focuses on IL-37b functions in diverse diseases. Our previous research found that IL-37d inhibits lipopolysaccharide-induced inflammation in endotoxemia through a mechanism different from that of IL-37b. However, whether IL-37d plays a role in colitis and the underlying mechanisms is still obscure. Herein, we identified whether IL-37d regulates NLRP3 inflammasome activity and determined its effect on colitis.
Methods
NLRP3 inflammasome in macrophages from IL-37d transgenic (IL-37dtg) and control wild type (WT) mice were activated by lipopolysaccharide and adenosine 5′-triphosphate. The expression of NLRP3 inflammasome components and its downstream effector, IL-1β, were detected by real-time polymerase chain reaction, western blot, and ELISA. The models of alum-induced peritonitis and dextran sodium sulfate (DSS)-induced colitis were used to investigate the function of IL-37d on regulating the activity of NLRP3 inflammasome in vivo.
Results
Our results showed that the activation of NLRP3 inflammasome in macrophage and alum-induced peritonitis was inhibited by IL-37d. Strikingly, IL-37d suppressed NLRP3 expression at the priming step via inhibiting NF-κB activation by transcriptional profiling. Moreover, the recombinant protein IL-37d attenuated NLRP3 inflammasome activation and the production of IL-1β, which could be reversed by IL-1R8 knockdown. Finally, IL-37d transgenic mice resisted DSS-induced acute colitis and NLRP3 inflammasome activation.
Conclusion
Interleukin-37d inhibits overactivation of the NLRP3 inflammasome through regulating NLRP3 transcription in an IL-1R8 receptor-mediated signaling pathway.
In summary, IL-37d suppresses inflammasome activation through inhibiting NLRP3 transcription in a receptor-dependent manner. Further, IL-37d could alleviate DSS-induced colitis by inhibiting NLRP3 inflammasome activation. |
---|---|
ISSN: | 1078-0998 1536-4844 |
DOI: | 10.1093/ibd/izaa124 |