Type-II Ising Superconductivity and Anomalous Metallic State in Macro-Size Ambient-Stable Ultrathin Crystalline Films
Recent emergence of two-dimensional (2D) crystalline superconductors has provided a promising platform to investigate novel quantum physics and potential applications. To reveal essential quantum phenomena therein, ultralow temperature transport investigation on high-quality ultrathin superconductin...
Gespeichert in:
Veröffentlicht in: | Nano letters 2020-08, Vol.20 (8), p.5728-5734 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent emergence of two-dimensional (2D) crystalline superconductors has provided a promising platform to investigate novel quantum physics and potential applications. To reveal essential quantum phenomena therein, ultralow temperature transport investigation on high-quality ultrathin superconducting films is critically required, although it has been quite challenging experimentally. Here, we report a systematic transport study on the ultrathin crystalline PdTe2 films grown by molecular beam epitaxy (MBE). Interestingly, a new type of Ising superconductivity in 2D centrosymmetric materials is revealed by the detection of large in-plane critical field more than 7 times the Pauli limit. Remarkably, in a perpendicular magnetic field, we provide solid evidence of an anomalous metallic state characterized by the resistance saturation at low temperatures with high-quality filters. The robust superconductivity with intriguing quantum phenomena in the macro-size ambient-stable ultrathin PdTe2 films remains almost the same for 20 months, showing great potentials in electronic and spintronic applications. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.0c01356 |