Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARS‐CoV‐2 and Other Respiratory Viruses

The ongoing global novel coronavirus pneumonia COVID‐19 outbreak has engendered numerous cases of infection and death. COVID‐19 diagnosis relies upon nucleic acid detection; however, currently recommended methods exhibit high false‐negative rates and are unable to identify other respiratory virus in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-08, Vol.16 (32), p.e2002169-n/a, Article 2002169
Hauptverfasser: Wang, Ming, Fu, Aisi, Hu, Ben, Tong, Yongqing, Liu, Ran, Liu, Zhen, Gu, Jiashuang, Xiang, Bin, Liu, Jianghao, Jiang, Wen, Shen, Gaigai, Zhao, Wanxu, Men, Dong, Deng, Zixin, Yu, Lilei, Wei, Wu, Li, Yan, Liu, Tiangang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ongoing global novel coronavirus pneumonia COVID‐19 outbreak has engendered numerous cases of infection and death. COVID‐19 diagnosis relies upon nucleic acid detection; however, currently recommended methods exhibit high false‐negative rates and are unable to identify other respiratory virus infections, thereby resulting in patient misdiagnosis and impeding epidemic containment. Combining the advantages of targeted amplification and long‐read, real‐time nanopore sequencing, herein, nanopore targeted sequencing (NTS) is developed to detect SARS‐CoV‐2 and other respiratory viruses simultaneously within 6–10 h, with a limit of detection of ten standard plasmid copies per reaction. Compared with its specificity for five common respiratory viruses, the specificity of NTS for SARS‐CoV‐2 reaches 100%. Parallel testing with approved real‐time reverse transcription‐polymerase chain reaction kits for SARS‐CoV‐2 and NTS using 61 nucleic acid samples from suspected COVID‐19 cases show that NTS identifies more infected patients (22/61) as positive, while also effectively monitoring for mutated nucleic acid sequences, categorizing types of SARS‐CoV‐2, and detecting other respiratory viruses in the test sample. NTS is thus suitable for COVID‐19 diagnosis; moreover, this platform can be further extended for diagnosing other viruses and pathogens. A detection technology, nanopore targeted sequencing (NTS), for the accurate and comprehensive detection of SARS‐CoV‐2 and other respiratory viruses within 6–10 h is developed, which is suitable for the identification of suspected cases and used as a supplementary technique for the SARS‐CoV‐2 test. NTS can also monitor mutations in the virus and the type of virus.
ISSN:1613-6810
1613-6829
1613-6829
DOI:10.1002/smll.202002169