Atomic Layer Deposition Process-Enabled Carrier Mobility Boosting in Field-Effect Transistors through a Nanoscale ZnO/IGO Heterojunction

Low-temperature (≤400 °C), stackable oxide semiconductors are promising as an upper transistor ingredient for monolithic three-dimensional integration. The atomic layer deposition (ALD) route provides a low-defect, high-quality semiconducting oxide channel layer and enables accurate controllability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-07, Vol.12 (30), p.33887-33898
Hauptverfasser: Seul, Hyeon Joo, Kim, Min Jae, Yang, Hyun Ji, Cho, Min Hoe, Cho, Min Hee, Song, Woo-Bin, Jeong, Jae Kyeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-temperature (≤400 °C), stackable oxide semiconductors are promising as an upper transistor ingredient for monolithic three-dimensional integration. The atomic layer deposition (ALD) route provides a low-defect, high-quality semiconducting oxide channel layer and enables accurate controllability of the chemical composition and physical thickness as well as excellent step coverage on nanoscale trench structures. Here, we report a high-mobility heterojunction transistor in a ternary indium gallium zinc oxide system using the ALD technique. The heterojunction channel structure consists of a 10 nm thick indium gallium oxide (IGO) layer as an effective transporting layer and a 3 nm thick, wide band gap ZnO layer. The formation of a two-dimensional electron gas was suggested by controlling the band gap of the IGO quantum well through In/Ga ratio tailoring and reducing the physical thickness of the ZnO film. A field-effect transistor (FET) with a ZnO/In0.83Ga0.17O1.5 heterojunction channel exhibited the highest field-effect mobility of 63.2 ± 0.26 cm2/V s, a low subthreshold gate swing of 0.26 ± 0.03 V/dec, a threshold voltage of −0.84 ± 0.85 V, and an I ON/OFF ratio of 9 × 108. This surpasses the performance (carrier mobility of ∼41.7 ± 1.43 cm2/V s) of an FET with a single In0.83Ga0.17O1.5 channel. Furthermore, the gate bias stressing test results indicate that FETs with a ZnO/In1–x Ga x O1.5 (x = 0.25 and 0.17) heterojunction channel are much more stable than those with a single In1–x Ga x O1.5 (x = 0.35, 0.25, and 0.17) channel. Relevant discussion is given in detail on the basis of chemical characterization and technological computer-aided design simulation.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c06382