Lymecycline reverses acquired EGFR-TKI resistance in non–small-cell lung cancer by targeting GRB2

[Display omitted] Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) were first-line treatments for NSCLC patients with EGFR-mutations. However, about 30 % of responders relapsed within six months because of acquired resistance. In this study, we used Connectivity Map (CMap) to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacological research 2020-09, Vol.159, p.105007-105007, Article 105007
Hauptverfasser: Chen, Yang, Wu, Jie, Yan, Hongfei, Cheng, Yang, Wang, Yizhe, Yang, Yi, Deng, Mingming, Che, Xiaofang, Hou, Kezuo, Qu, Xiujuan, Zou, Dan, Liu, Yunpeng, Zhang, Ye, Hu, Xuejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) were first-line treatments for NSCLC patients with EGFR-mutations. However, about 30 % of responders relapsed within six months because of acquired resistance. In this study, we used Connectivity Map (CMap) to discover a drug capable of reversing acquired EGFR-TKIs resistance. To investigate Lymecycline’s ability to reverse acquired EGFR-TKIs resistance, two Icotinib resistant cell lines were constructed. Lymecycline’s ability to suppress the proliferation of Icotinib resistant cells in vitro and in vivo was then evaluated. Molecular targets were predicted using network pharmacology and used to identify the molecular mechanism. Growth factor receptor-bound protein 2 (GRB2) is an EGFR-binding adaptor protein essential for EGFR phosphorylation and regulation of AKT/ERK/STAT3 signaling pathways. Lymecycline targeted GRB2 and inhibited the resistance of the cell cycle to EGFR-TKI, arresting disease progression and inducing apoptosis in cancer cells. Combined Lymecycline and Icotinib treatment produced a synergistic effect and induced apoptosis in HCC827R5 and PC9R10 cells. Cell proliferation in resistant cancer cells was significantly inhibited by the combined Lymecycline and Icotinib treatment in mouse models. Lymecycline inhibited the resistance of the cell cycle to EGFR-TKI and induced apoptosis in NSCLC by inhibiting EGFR phosphorylation and GRB2-mediated AKT/ERK/STAT3 signaling pathways. This provided strong support that Lymecycline when combined with EGFR targeting drugs, enhanced the efficacy of treatments for drug-resistant NSCLC.
ISSN:1043-6618
1096-1186
DOI:10.1016/j.phrs.2020.105007