Imaging the In Vivo Degradation of Tissue Engineering Implants by Use of Supramolecular Radiopaque Biomaterials
For in situ tissue engineering (TE) applications it is important that implant degradation proceeds in concord with neo‐tissue formation to avoid graft failure. It will therefore be valuable to have an imaging contrast agent (CA) available that can report on the degrading implant. For this purpose, a...
Gespeichert in:
Veröffentlicht in: | Macromolecular bioscience 2020-07, Vol.20 (7), p.e2000024-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For in situ tissue engineering (TE) applications it is important that implant degradation proceeds in concord with neo‐tissue formation to avoid graft failure. It will therefore be valuable to have an imaging contrast agent (CA) available that can report on the degrading implant. For this purpose, a biodegradable radiopaque biomaterial is presented, modularly composed of a bisurea chain‐extended polycaprolactone (PCL2000‐U4U) elastomer and a novel iodinated bisurea‐modified CA additive (I‐U4U). Supramolecular hydrogen bonding interactions between the components ensure their intimate mixing. Porous implant TE‐grafts are prepared by simply electrospinning a solution containing PCL2000‐U4U and I‐U4U. Rats receive an aortic interposition graft, either composed of only PCL2000‐U4U (control) or of PCL2000‐U4U and I‐U4U (test). The grafts are explanted for analysis at three time points over a 1‐month period. Computed tomography imaging of the test group implants prior to explantation shows a decrease in iodide volume and density over time. Explant analysis also indicates scaffold degradation. (Immuno)histochemistry shows comparable cellular contents and a similar neo‐tissue formation process for test and control group, demonstrating that the CA does not have apparent adverse effects. A supramolecular approach to create solid radiopaque biomaterials can therefore be used to noninvasively monitor the biodegradation of synthetic implants.
Computed tomography (CT) imaging noninvasively shows the degradation of an electrospun aortic implant graft that is modularly composed of an elastomer and a novel iodinated (purple) contrast agent (CA). Both synthetic components contain supramolecularly interacting bis‐urea units (blue), ensuring their intimate mixing. The supramolecular approach to creating radiopaque biomaterials is applied to porous implants for in situ cardiovascular tissue engineering
. |
---|---|
ISSN: | 1616-5187 1616-5195 |
DOI: | 10.1002/mabi.202000024 |