Pressure–Temperature Phase Diagram of Lithium, Predicted by Embedded Atom Model Potentials
In order to study the performance of interatomic potentials and their reliability at higher pressures, the phase diagrams of two different embedded-atom-type potential models (EAMs) and a modified embedded-atom model (MEAM) of lithium are compared. The calculations were performed by using the nested...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2020-07, Vol.124 (28), p.6015-6023 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to study the performance of interatomic potentials and their reliability at higher pressures, the phase diagrams of two different embedded-atom-type potential models (EAMs) and a modified embedded-atom model (MEAM) of lithium are compared. The calculations were performed by using the nested sampling technique in the pressure range 0.01–20 GPa, in order to determine the liquid–vapor critical point, the melting curve, and the different stable solid phases of the compared models. The low-pressure stable structure below the melting line is found to be the body-centered-cubic (bcc) structure in all cases, but the higher pressure phases and the ground-state structures show a great variation, being face-centered cubic (fcc), hexagonal close-packed (hcp), a range of different close-packed stacking variants, and highly symmetric open structures are observed as well. A notable behavior of the EAM of Nichol and Ackland (Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 93, 184101) is observed, that the model displays a maximum temperature in the melting line, similarly to experimental results. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/acs.jpcb.0c03882 |