Spatiotemporal changes in mechanical matrisome components of the human ovary from prepuberty to menopause

Abstract STUDY QUESTION How do elastic matrisome components change during the lifetime of the human ovary? SUMMARY ANSWER The deposition and remodeling of mechanical matrisome components (collagen, elastin, elastin microfibril interface-located protein 1 (EMILIN-1), fibrillin-1 and glycosaminoglycan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human reproduction (Oxford) 2020-06, Vol.35 (6), p.1391-1410
Hauptverfasser: Ouni, E, Bouzin, C, Dolmans, M M, Marbaix, E, Pyr dit Ruys, S, Vertommen, D, Amorim, C A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract STUDY QUESTION How do elastic matrisome components change during the lifetime of the human ovary? SUMMARY ANSWER The deposition and remodeling of mechanical matrisome components (collagen, elastin, elastin microfibril interface-located protein 1 (EMILIN-1), fibrillin-1 and glycosaminoglycans (GAGs)) that play key roles in signaling pathways related to follicle activation and development evolve in an age- and follicle stage-related manner. WHAT IS KNOWN ALREADY The mechanobiology of the human ovary and dynamic reciprocity that exists between ovarian cells and their microenvironment is of high importance. Indeed, while the localization of primordial follicles in the collagen-rich ovarian cortex offers a rigid physical environment that supports follicle architecture and probably plays a role in their survival, ovarian extracellular matrix (ECM) stiffness limits follicle expansion and hence oocyte maturation, maintaining follicles in their quiescent state. As growing follicles migrate to the medulla of the ovary, they encounter a softer, more pliant ECM, allowing expansion and development. Thus, changes in the rigidity of the ovarian ECM have a direct effect on follicle behavior. Evidence supporting a role for the physical environment in follicle activation was provided in clinical practice by ovarian tissue fragmentation, which promoted actin polymerization and disrupted ovarian Hippo signaling, leading to increased expression of downstream growth factors, promotion of follicle growth and generation of mature oocytes. STUDY DESIGN, SIZE, DURATION We investigated quantitative spatiotemporal changes in collagen, elastin, EMILIN-1, fibrillin-1 and GAGs from prepuberty to menopause, before conducting a closer analysis of the ECM surrounding follicles, from primordial to secondary stages, in both prepubertal and tissue from women of reproductive age. The study included ovarian tissue (cortex) from 68 patients of different ages: prepubertal (n = 16; mean age [±SD]=8 ± 2 years); reproductive (n = 21; mean age [±SD]=27 ± 4 years); menopausal with estrogen-based HRT (n = 7; mean age [±SD]=58 ± 4 years); and menopausal without HRT (n = 24; mean age [±SD]=61 ± 5 years). PARTICIPANTS/MATERIALS, SETTING, METHODS Quantitative investigations of collagen and GAG deposition in ovarian tissue throughout a woman’s lifetime were conducted by analyzing brightfield images. Characteristic features of collagen fiber content were based on polarized light microscopy, since po
ISSN:0268-1161
1460-2350
DOI:10.1093/humrep/deaa100