Organic Single-Crystal Transistor with Unique Photo Responses and Its Application as Light-Stimulated Synaptic Devices
Tremendous progress has been achieved on organic transistor-based photodetectors; however, because of the nonpositive correlation relationship between the photo/dark current ratio (P) and the gate voltage, the claimed best P, R (photoresponsivity), and D* (detectivity) can hardly be obtained simulta...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-07, Vol.12 (27), p.30627-30634 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tremendous progress has been achieved on organic transistor-based photodetectors; however, because of the nonpositive correlation relationship between the photo/dark current ratio (P) and the gate voltage, the claimed best P, R (photoresponsivity), and D* (detectivity) can hardly be obtained simultaneously at a given gate voltage, which severely compromises the device performance. Here, a light and voltage dually gated transistor based on an organic semiconducting single crystal of 2,6-dithienylanthracene (DTAnt) is developed. Attributing to its very low on/off ratio in the dark and the remarkable increment of mobilities under illumination, this phototransistor shows good performance with a P of 3.83 × 103, R of 1.32 A W–1, and D* of 1.94 × 1012 Jones achieved simultaneously at V g = −100 V. Besides, the good reversibility and repeatability of its light-responsive behavior allows for the construction of an artificial photonic neuromorphic device with demonstrated synaptic functions, including excitatory postsynaptic current, short/long-term memory , and pair-pulse facilitation/depression. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.0c05809 |